The Jiangming’s reading notes for the book Reinforcement Learning: An introduction,
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Background and History

The basic idea is simply to capture the most important aspects of the real problem facing
a learning agent interacting with its environment to achieve a goal. The formulation of the
problems that can be addressed by reinforcement learning must be able to sense the state of
the environment, must be able to take actions that affect the state, and must have a goal or
goals relating to the state of the environment.

RL vs supervised learning Supervised learning is learning from a training set of labeled
examples provided by a knowledgable external supervisor. The object of this kind of learning
is for the system to extrapolate, or generalize, its responses so that it acts correctly in situations
not present in the training set. Different from supervised learning, reinforcement learning
focuses on interative problem that is often impractical to obtain examples of desired behavior
that are both correct and representative of all the situations in which the agent has to act.

RL vs unsupervised learning Unsupervised learning is about finding structure hidden in
collections of unlabeled data. Different from it, reinforcement learning is trying to maximize
a reward signal instead of trying to find hidden structure. But uncovering structure in an
agent’s experience indeed can be useful in reinforcement learning.

Therefore, reinforcement learning is considered to be a third machine learning paradigm,
alongside of supervised learning, unsupervised learning, and perhaps other paradigms as

well. There are several key point in reinforcement learning.

* The main challenge is to balance between exploration and exploitation. The agent has
to exploit what it already knows in order to obtain reward, but it also has to explore in

order to make better action selections in the future.

* It explicitly considers the whole problem of a goal-directed agent interacting with an
uncertain environment. Facing the uncertainty about the environment, it can involve

planning or supervised learning.

* Of all the forms of machine learning, reinforcement learning is the closest to the kind
of learning that humans and other animals do, and many of the core algorithms of
reinforcement learning were originally inspired by biological learning systems.

Reinforcement learning should have a policy, a reward signal, a value function, optionally,
a model of the environment. A policy is a mapping from perceived states of the environment
to actions to be taken when in those states. A reward signal defines the goal in a reinforcement
learning problem. On each time step, the environment sends to the reinforcement learning
agent a single number, a reward. The agent’s sole objective is to maximize the total reward it
receives over the long run. The value of a state is the total amount of reward an agent can
expect to accumulate over the future, starting from that state.



For the optional element, model. This is something that mimics the behavior of the
environment, or more generally, that allows inferences to be made about how the environment
will behave (e.g., transitions from current state to other states). Models are used for planning.
Methods for solving reinforcement learning problems that use models and planning are
called model-based methods, as opposed to simpler model- free methods that are explicitly
trial-and-error learners. Modern reinforcement learning spans the spectrum from low-level,
trial-and-error learning to high-level, deliberative planning.

The history of RL has two main thread. One thread concerns learning by trial and error
that started in the psychology of animal learning. The other thread concerns the problem of
optimal control and its solution using value functions and dynamic programming. A third,

less distinct thread concerns temporal-difference methods.

Optimal control with value function and dynamic programming The term optimal
control is firstly used in late 1950s to describe the problem of designing a controler to
minimize a loss of a dynamical system’s behavior over time. Bellman propose the concept
of states and value function called Bellam Equaltion. Bellman (1957) also introduced
Markov Decision Processes (MDP). Howard (1960) devised policy iteration method for MDP.
Dynamic programming is widely considered the only feasible way of solving general stochastic
optimal control problems (the curse of dimensionality). Many works try to avoid exhaustive
computing. Watkins (1989) is the first to use on-line learning for dynamic programming
and formalize reinforcement learning with MDP. And then Bertsekas and Tsitsiklis (1996)

combined dynamic programming with neural networks.

Trial-and-error learning The idea of trial-and-error learning can go back to the 1850s of
Alexander Bain’s discussion of learning by “groping and experiment" and more explicitly to
the 1894 use of the term to describe Conway Lloyd Morgan’s observation of animal behavior.
The first success to express the essence of trial-and-error learning as a principle of leraning
was Edward Thorndike and his Law of Effect. In the Law of Effect, reinforcement is the
strengthening of a pattern of behavior as a result of an animal receiving a stimulus — a
reinforcer — in an appropriate temporal relationship with another stimulus or with a response.

When the interest of trial-and-error learning is shifted to generalization and pattern
recognition (from RL to supervised learning), the distinction between them become confusing.

So in 1960s and 1970a, research on trial-and-error learning becomes rare.

Temporal-difference learning Temporal-difference methods seem to be new and unique
to reinforcement learning. The origins of temporal-difference learning are in part in animal
learning psychology, in particular, in the notion of secondary reinforcers. Samuel (1959)
was the first to propose and implement a learning method that included temporal-difference
ideas. Instead from animal learning (Minsky’s work), his inspiration comes from Shannon

(1950)’s suggestion that a computer could be programmed to use an evaluation function.



In 1972, Klopf brought trial-and-error learning together with an important component of
temporal-difference learning. By developing Klopf’s work, Sutton (1985) extensively study
the actor-critic architecture. Then, The temporal-difference and optimal control threads

were fully brought together in 1989 with Chris Watkins’s development of Q-learning.

Multi-arm Bandits

The n-armed bandit problem is a nonassociative, evaluative feedback problem. You are faced
repeatedly with a choice among n different options, or actions. After each choice you receive
a numerical reward chosen from a stationary probability distribution that depends on the
action you selected. Your objective is to maximize the expected total reward over some time
period.

If you select a greedy action, we say that you are exploiting your current knowledge of
the values of the actions. If instead you select one of the nongreedy actions, then we say
you are exploring. Exploitation is the right thing to do to maximize the expected reward on
the one step, but exploration may produce the greater total reward in the long run. The key

problem is how to balance them.

Action-Value Methods we denote the true (actual) value of action a as ¢(a), and the
estimated value on the tth time step as Q¢(a).

Ri+Ry+..4+ Ry
Qi(a) = 1 th(a) Ni( )' (1)

The greedy action selection method is A; = arg max,Q;(a), which always exploits current
knowledge. We can use e-greedy method for exploration, which take the arg max with 1 — ¢

probability while random action with e probability.

Incremental Implementation For one action, the estimated average rewards can be

computed incrementally by

1< 1
Qk—l—l:EZRi:QkJF%[Rk*Qk]v 2
=1

where (Qy11 is the average rewards on the first £ samples, and (); is the initialized value

without any sample. The general form of updating is:

Qr+1(a) = Qr(a) + ax(a)[Re(a) — Qx(a)], 3)

where a(a) € (0, 1]. If we expand the equation 3:

k

Qrr1(a) = (1 — ar(@)*Qi(a) + Y ar(a)(1 — ax(a)*R;, )

=1



where (1 — oz (a))F + 2% ap(a)(1 — ag(a))*~% = 1, so the value is the weighted average.
The aj(a) should satisfy Y o, ax(a) = oo and Y 72 ; ax(a)? < oo to make. The first
condition is required to guarantee that the steps are large enough to eventually overcome any
initial conditions or random fluctuations. The second condition guarantees that eventually
the steps become small enough to assure convergence. In the language of statistics, these
methods are biased by their initial estimates.

Upper-Confidence-Bound Action Selection The e-greedy action selection force the non-
greedy actions to be tried. It had better consider the action potential for the optimization.
Upper-Confidence-Bound Action Selection (UCB) is:

Ay = argmax,[Q¢(a) + ¢ ] (5)

Gradient Bandits We define H;(a) for each action a, showing the preference of the action
to be taken.

Pri{A; =a} = = 7(a) (6)

> py eHe®

. If we sample the action A; with the reward Ry, the preference are updated by:

Hiy1(Ar) = Hi(Ar) + (R — Re)(1 — mi(Ayp))

Ht+1(a) = Ht(a) — Oé(Rt — Rt)ﬂ‘t(a) Ya 75 At, (7)

where R; is the average rewards to now (). If the current reward is higher then the average

reward, we increase the preference of action A; and decrease others. The deep insight is:

OE[R,]

Ht+1(a) = Ht(a) + a@Ht(a)

: ®)

The prove is shown in pages 43—46 of the original article.

Finite Markov Decision Process

The setting reinforcement learning is that we have an agent and an environment, and we want
to achieve an predefined goal in the environment by multiple interaction between the agent
an the environment. The interactions are taken in a sequence of discrete time steps. At each
time step ¢, the agent receives some representation of the environment’s state, S; € S, where
S is the set of possible states, and on that basis selects an action, A; € A(S;), where A(S;)
is the set of actions available in state S;. One time step later, in part as a consequence of its
action, the agent receives a numerical reward, R;+1 € R C R, and finds itself in a new state,
S¢+1. For the boundary between agent and environment, anything that cannot be changed
arbitrarily by the agent is considered to be outside of it and thus part of its environment.
Reinforcement learning methods specify how the agent changes its policy 7 (a|s) as a result
of its experience, where 7. (a|s) is the probability that A; = a if S; = s.



The agent’s goal is to maximize the cumulative reward it receives in the long run:
Gy = Riy1 + Riqo + Riy3 + ... + Ry 9

A subsequence of an interaction is called an episode, which has a terminal state. On the
other hand, in many cases the agent—environment interaction does not break naturally into
identifiable episodes, but goes on continually without limit, i.e., T' = oo, which we call

continuing tasks. The additional concept that we need is that of discounting:
oo
Gy = Ris1 + YRijo + 7V Rigs + ... = Z YV Ryprs1, (10)

where 0 < v < 1 called discount rate

Certainly the state signal should include immediate sensations such as sensory mea-
surements, but it can contain much more than that. Is it necessary to efficiently represent
the whole environment, or does the whole environment including the whole history can
significantly help the reinforcement learning?. On the other hand, the state signal should not
be expected to inform the agent of everything about the environment, or even everything
that would be useful to it in making decisions. What we would like, ideally, is a state signal
that summarizes past sensations compactly, yet in such a way that all relevant information is

retained, which is said Markov. Move:
Pr{Ri11 =1, S¢+1 = 8|S0, Ao, Ru, .., St—1, Ae—1, Ry, St, A} (11)
to
p(s',r|s,a) = Pr{Ry11 =1, Sey1 = §'|St, As}. (12)

This is the definition of finite Markov Decision Process (MDP). More details, the expected

rewards for state—action pairs are:

T(S7 CL) = E[Rt—i-l"st =S, At = a] - Z r Z p(s,a 7"8, a’)v (13)

reR s'eS
the state-transition probabilities are:
(s'|s,a) = Zps r|s,a), (14)
reER
the expected rewards for state—action—next-state triples:
p(s',rls,a)

r(s,a,8") = E[Ri+1|St = s, A = a,Sp11 = 8’| = Z rp(r|s,a, s") Z P, rls, a) .

’]5 a)
re€R reR
(15)



Value Functions

In addition, If we have a policy 7, we can define the value function on the policy. One is the

value function on states that estimate how good it is for the agent to be in a given state:

Ur(s) = Ex[Gi| St = ] ZV Riyp+1]Se = s]. (16)
k=0
Similarly, the other is the value function on state-action pairs that estimate how good it is for

the agent to perform an action in a given state:

o0
Gr(s,a) = Ex[Ge|St = s, Ay = a] = E[Z ’yth+k+1|St =s,A; = al. 17)
k=0

Using the dynamic programming method, the bellman equations of the state value

function is:
vn(s) =D _mwlals) Y p(s',rls, a)lr +7vn(s). (18)

a s',r

Intuitively, for the current state s, we can take all possible actions a under the policy 7.
For each possible action, we enumerate all possible reachable s’ and its reward r with the
probability p(s’, 7|s,a). And then, we should sum up all possible values to get expectations

from the reachable state s’ plus 7.

Optimal Value Functions

Our goal is to find a policy that achieves a lot of reward over the long run, i.e., for all s € S,
U4 (s) = max,v.(s) (19)

and for all s € S and a € A(s)
q«(s,a) = max,qr(s,a). (20)

In particular, g4 (s, a) = E[Ri11 + yv«(Si+1)|St = s, A¢ = a]. Dynamic Programming (DP)
is an algorithmic technique for solving an optimization problem by breaking it down into
simpler subproblems and utilizing the fact that the optimal solution to the overall problem
depends upon the optimal solution to its subproblems. Because the value function satify the
bellman equations, so we can use DP to solve the optimization problem by:

Ux(8) = maXge 4(s)qx(5, a)
= max,e 4(s)E Q¢ St = 5, Ay = a]
= maXge () Br [P peg V" Regrr1]Se = s, Ay = d o1
= maxge As) Er [Rit1 + 7 Ype V¥ ReyhralSe = 5, A = a
(
(

= maX,e A(s)E[Re11 + 70« (St41)|S: = 5, Ay = a]
S) 25/77”1’)(5’70‘8’0’)[71_}—”*( )]



If we use v, to find the optimal policy, we have to do one-step search. The beauty of v, is
that if one use it to evaluate short-term consequences of actions, the greedy policy is actually

optimal in long run.

G(s,a) =3 g, p(s,r]s, a)[r + ymaxyq.(s', o)) (22)
If we use ¢, to find the optimal policy, in state s, we can simply use the action a that

maximizes ¢ (s, a). For the optimal value functions, if the dynamics of the environment are

known (p(s’, |s,a)), then in principle one can solve this system of equations.

Dynamic Programming

If we have a policy 7, how to compute the value function for the policy. The value
function computation is called policy evaluation. Suppose we know the environment, i.e.,
the environment can provide the probability distribution p(s’, 7|s, a). Recall that
vr(8) = Zw(a]s)Zp(s',r]s,a)[r+7vw(s')]. (23)
a s',r
Based on the Bellman equation, the value functions can be approximated by iterative updating
from the random initialization vg:
ver1(s) =Y _w(als) > p(s',rls, a)[r + yve(s)]. (24)
a s'r

If the k — oo, the {vy } can converge to v,. The algorithm is called iterative policy evaluation.

How to get better policy

Let 7 and 7’ be any pair of deterministic policies (Noted that a deterministic policy should
output only one action given a state instead of action distributions. Given a action distribution
p(als), we can obtain a deterministic policy by always choosing the action that has highest
probability.) such that, for all s € S,

Gx (3,7 (5)) 2 vr(s) = ar(s,7(s)) (25)
Then the policy 7’ must be as good as, or better than, 7. That is for all s € S,
U (8) > vr(s). (26)
There is a simple proof for any state s:

Ur(s) < gr(s,7(s))
= Ex[Rit1 + y0r(St41)|St = s]
< Ex[Riy1 + 7Gx (Sv1, ™ (Se41)) St = 8]
Rip1 + VEp [Riro + Yvr(Si42)]| St = 5] (27)
Ris1 4+ YRt + 7?0 (Si42)[S; = 5]
Rip1 + Ry + V2 Rigs + V2 Riya + ... Sp = 8]



This inspire us that if we want to obtain a better policy 7/, we should always choose the

action a = 7'(s) = arg max,q, (s, a). In this way, the policy can be interatively improved:
E I E I E I E
Ty —> Uy — M1 —> Uy — M2 —F Upgevo —> My —> Uy (28)

However, — requires iterative approximation, which make the whole improvement really
slow. In fact, policy iteration (—) can be truncated without losing the convergence guarantees

of policy iteration. We changes

Vgt1(8) = Zw(a]s) Zp(s', rls,a)[r + yur(s')] (29)
to
Vg+1(8) = max, Zp(s’, rls,a)[r +yvr(s')]. (30)

In this way, we can make the optimization (28) shorter.

The interaction between a agent with the environment can be regarded as a Markov Deci-
sion Processing. After the interaction, there will be a trajectory 7 = [s1, a1, S2, ag, ..., ST, ar]
and a reward R(7). With the assumption that the reward is accumulated for each step reward
re, R(T) = Zthl r+. Given a state s;, the agent (actor) 7 will output an action a; in each
step, i.e., a; = 7(s¢).

In general setting, the way to define the reward is given according to our goals. The
question is how to obtain the optimal agent (actor) g+ that can maximize the expectation of

the rewards over all the possible trajectory:
Rg- = > pe-(T)R(7), (31)
T

where py(7) is the probability of a trajectory 7 given by a model parameterized by 6 over all

the possible trajectories.

Policy Gradient

How to update the # to maximize the reward Ry. Policy Gradient directly optimize the policy
7p that outputs a action a; given a state s, by gradient ascent 6 < § + AV Ry. The policy
gradient is
VeRy =, R(T)Vps(7)

= >, R(T)po(7) Vg log po(7)

=By (r) [R(T) Vi log py(7)] (32)

~ % Yoy R(7") Vg log py(7")

= & Yoe1 Stk R(T")Volog po(af|sp)
There is an assumption that action is outputted according to the current state. The general
training process is that we can use the current model 6 to generate many samples (s, a;) and

rewards R(7) to update the model.



Policy Gradient VS Classification The policy gradient is similar to classification that
directly train a model output a action for the given state, % 25:1 ZtTgl Vo logpg(a}|sy).
The only difference is that we have global rewards R(7") on the whole trajectory 7" in policy
gradient. The concerned thing is the rewards. There are some problems, by addressing which,

we can make model robust.

* Problem 1 is that sometimes, the rewards are always positive, so we add a baseline to

make the reward negative if it is below the baseline

N T,
VoRg ~ — Z > [R(7") — bV log pe(ay|s;) (33)

n 1t=1
* Problem 2 is that the reward R(7) is the total reward of whole trajectory 7, and
sometimes one action is bad but the total reward is positive or one action is good but
the total reward is negative. So we change R(7") = tT"l i’ to be the reward from

the current state to the end EtT,":t T

N T, Tn

VoRy ~ Z > D i —bVelogps(ar|sy) (34)

nltlt’t

* Problem 3 is that the future rewards are not that important (empirically), so we add a

decay to the future rewards, changing Zt/ Ty to Zt, : ')/t _tr" where v < 1:

N T, T,

VoRy ~ Z D A" — bV log pa(afsy) (35)

n 1t=1 t'=t

usually, the baseline b is predicted by a neural network, and R(7") is estimated by

A?(s;, a;) that compute the future rewards using the model 6.

Q-learning

Different from policy gradient that aim to directly learn a policy (agent or actor) m, Q-learning
is value-based method that aims to learn a critic to evaluate how good the current state is.
Firstly, we define a state-value function V™ (s;) as the critic to evaluate how good the actor 7
in the current sy, i.e., the rewards from current state to the end. For example, V™ is a neural
network where the input is state s and the output is a scalar (score) to say how many scores
we will obtained after visiting s. Then, we define action-value function Q™ (s, a) that return

the rewards to the end state after taking action a at state s.
Vﬂ—(st) = Eatwﬂ'(a\st) [Qﬂ(sta at)} = Z ﬂ—(at|8t)Q7r(St7 at) (36)
a
The reason why we use Q function is that sometimes the action space is too large, and we

use sampling methods to solve the problem. If we have the learned Q™ (s, a), we take the

action a* = arg max, Q" (s, a) for every states. There are two method to estimate V™ () or

Q"(s,a).

10
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Figure 1: TD training on Q-learning.

» Exhaustive search: MC-based approaches. We compute the reward from the current state
st to the end, i.e., G(s¢) = ZtT > o Tt and then regress it to V™ (s;), or we compute
the reward from the current state s; with action a; to the end, i.e., G¢(s¢, a¢) = >, 74,
and then regress it to Q™ (s¢, at).

* Dynamic programming: Temporal-difference (TD) approaches. We don’t have to
play to the end, and given a sample s¢, as, ¢, Se11, V™ (5¢) — V7 (se41) = D, Tt
and Q™ (s¢,a) = ri + Q" (S4+1, max(m(se+1))). For example, we can use neural
network to obtain V7 (s;) and V™ (s¢41), and then, we can update the value function
by regression to the difference. MC methods have high variance while TD methods

might be inaccurate.

Figure 1 shows the TD training on Q-learning, But there are some problems.

* If we use TD to train model, we have to do regression both on the Q™ (s, a;) =
Tt + Q" (St+1, m(S¢+1)) and Q™ (se41, ™(St4+1)) = Q™ (S¢, ar) — r¢. The both side of
the equation are changed that makes the training hard and not converged. We fix one
value as target and only update () function by regression on one, i.e., Q™ (s, a;) =
e + Q7 (St41, T(St+1)) or Q™ (Sp41,m(S¢41)) = Q7 (8¢, ar) — 7 but not both. So at
the beginning of the training, we will copy () to @ that is fixed to produce target, and
Q is updated. After several round updating, we will copy the updated @ to Q and

continue training.

* The Q-learning heavily depends on sampling. If states and actions are not sampled (not
seen), we will always not make the unseen action. So if we do sampling, we have to take

more explorations. 1) Epsilon Greedy. a = arg max, (s, a) with a probability 1 — e,

exp(Q(s,a))

otherwise a is random picked. 2) Boltzmann Exploration. p(a|s) = S e (Q(s,a))

* For one actor 7, the samples are not much different. So we build a buffer to store the
samples from different 7, and replay (train) () function by picking a batch from the
buffer (This trick can make training samples diverse that similar to off-policy).

11



Algorithm 1 Q-learning algorithm
1: We initialize ()

2: repeat

3 Sample (s¢, at, ¢, S¢1-1) based on Q)
4 y=ry+max, Q(s¢11,a)

5:  update @ to make Q(s¢, as) close to y
6

: until end

The original training of @) is shown in Algorithm ??. If we consider the above 3 problems,

the training is shown in Algorithm 2.

Algorithm 2 Q-learning algorithm with considering the three problems
1: We initialize Q = Q

: repeat
Sample (s¢, ag, ¢, S¢41) based on @) (epsilon greedy trick)

Store (s¢, at, 1¢, St+1) to buffer

2
3
4
5:  Sample (s;, a;, 14, S;+1) from buffer (replay trick)
6 y=r;+max, Q(sit1,a)

7:  update ) to make Q(s;, a;) close to y (target network trick)
8 every C' steps reset Q =Q

9

- until end

Actor-Critic

We have the policy gradient method and Q-learning method. We can combine the two method

together. The gradient of the rewards in policy gradient is:

N Tn Tn

VoRg ~ — Z DD A"t — bV log py(ay|sy) (37)
n 1t=1 t/=t
where Zt,_t 7t *trg is the output of th ) function according to the definitions, i.e.,

O (s, ar) Z ’yt e (38)

=t
and the baseline b aims to make the step reward can be positive and negative. So b should be

the means over all possible values of Q(s¢, a;), i.e,
V™ (s¢) =b (39)

So the gradient of the rewards in actor-critic is:

N T,

VoRs ~ 1 0D QST af) — V(5}V log po(af 7). (40)

nltl

12



Because Q™ (s¢, ar) = E[r¢ + V™ (s¢41)], the above equation can be rewritten as:

N T,
D 1 - uy u
Voltg ~ DD I+ V™ (si) = VT (s7)] Ve log po(a|s}). (41)
n=1t=1
The useful tricks are 1) V' function network and 7 network can share the parts of parameters,
2) exploration on smooth 7. Asynchronous A2C (A3C) can calculate gradients on multiple
CPU/GPU.

Pairwise Derivative Policy Gradient When we want to learn () function using TD method,
we have to regress the value on the best action given by Q(s,a), y = r; + max, Q(si1,a).
The argmax problem a* = argmax Q(s, a) during gradient update, particular in continuous
action space. We can use GAN similar method to build a actor as generator to generate action,
and make () function as discriminator to ensure the action is the best action. The Q-learning
is modified to the Algorithm 3. Figure 2 shows the Actor-Critic model. The bottom structure
of AC model is similar to a GAN. If we fix 7, i.e., say 7 can always outputs the optimal action
a, we can use Q-learning to update () function. If we fix ) function, i.e., say () can always

give the optimal action a with the highest score, we can use the score to update 7.

Algorithm 3 Actor-Critic algorithm
1: We initialize Q = Q, 7 = 7
2: repeat

3: Sample (s¢, a¢, 1¢, S¢4-1) based on 7 (epsilon greedy trick)
4 Store (s¢, at, 1¢, St+1) to buffer

5. Sample (s;, a;, r4, S;4+1) from buffer (replay trick)

6y =ri+ maxg Qs Qsi1, 7(sit1))

7:  update ) to make Q(s;, a;) close to y (target network trick)
8:  update 7 to maximize Q(s;, 7(s;))

9:  every C stepsreset Q = Q, 7 = 7

10: until end

Off-policy

In previous sections, we actually use the similar off-policy idea that we will fixed actor to
interact with the environment (sampling). The general difference between on-policy and
off-policy is that on-policy use the learned 6 to interact with environment to obtain samples
to train #, while off-policy uses the another fixed ¢’ to obtain samples to train 6. In order to

address the off-policy, we use the importance sampling strategy.

13
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Figure 2: TD training on Actor-Critic.

Noted that the expectation is the same but the variances are different, i.e. Var[f(x)] #

Var[% f(z)]. So the off-policy gradient is

VoRy =E . py ) [R(T)Vologps(T)]

T (43)
= By () [EA R(T) Vg log po(7)]
If the action only depends on currents state, the gradient can be rewritten as:
VoRy = E(s, a)mmp [A? (51, a1) Vg log pa(a|st)]
= E(St,at)Nﬂe/ [5;&?;?3) A@’ (8157 at)VQ IOg p@(at|5t)] (44)
= B (g, 00) oy [ AT (51, 01) Vg log py(ast)]
= Eoy oy (2225 A7 (50, 01) Vg log polarlse)] - po(se) ~ pos(s2)
So the objective function is total reward:
'](9) = RG = E(St,at)ngz [5:}(21”?3) Ael(sb at)] (45)

The off-policy is based on importance sampling, so we have to make 6 and 6’ close addressing
variance issue. So the objective function should add regularization term to make the 6 and 6’
close:

Jppo(0) = Ry = Eqs, gy, [0 AY (54, a4)] — BEL(0,0) (46)

Pyr (at|st)

where K L(6,0") makes the constraints on behaviors (actions a;) not on parameters, which is
called Proximal Policy Optimization (PPO) or Trust Region Policy Optimization (TRPO).
The PPO/TRPO algorithm is shown in Algorithm 4. There is a improved PPO algorithm
called PPO2 by removing K L term with cliping strategy:

Jppo2(0) = E(sy,a0)~my [min(%zﬁ/(st’ a), clip(%, 1—¢1+ E)Aal(st, a))]
47)

_ - po(atlst) _ _ - po(at|st)
1—e, 1+4¢€) meansﬁpe,(atbt) < 1—¢,returnl eandlfpel(atISt) > 1+,

po(at|st)
por(atlst)’
return 1 + e. Intuitively

where clip(
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Algorithm 4 PPO/TRPO algorithm
1: using 6’ to interact with the environment to collect s;, a; and compute AY (s¢,a4)
2: optimizing Jppo(0) = E(s, a))~r, [599/((2'\58?) AY (st,a4)] — BKL(6,0)
3. if KL(6,0") > K L., increase
4: if KL(6,0") < K Ly, decrease (3

o if A% (s;,a;) positive and a; is good, so we have to make pg(ay|s;) larger. If pg(ay|s;)

po(at|st)
Pr (at|st)

is too small and is smaller than 1 — €, we use 1 — ¢ instead, but it cannot be

larger than 1 + ¢

o AY (s¢, ar) negative and a; is bad, so we have to make pg(a;|s;) smaller. If If pg(ay|s;)

po (at|st)
Py (atlst)
smaller than 1 — ¢

is too larger and is larger than 1 + €, we use 1 + ¢ instead, but it cannot be

Related Works

Robot control tasks (Levine et al., 2016; Watter et al., 2015), image/video recognition (Mnih
et al., 2014; Ba et al., 2015), games (Mnih et al., 2015; Maddison et al., 2015; Silver et al.,
2016).

Double Q-learning

Hasselt (2010) proved that a double estimator can soft the biased estimation by single
estimator, where the single estimator will overestimate the rewards, and the double estimator

will underestimate the rewards. The training is shown in Algorithm 5. The Double Q-learning

Algorithm 5 Double Q-learning
1: We initialize Q4, QP

2: repeat

3 Sample (s¢, a¢, ¢, S¢+1) based on QA and QP
4 Sample c from {A, B}

5. if c = A then

6 a* = argmax, Q“(s¢41,a)

7 y=ri+ QP (sip1,a”)

8 update Q* to make Q*(s;, a;) close to y

9

else
10 a* = argmax, QP (s441,0)
11: y=ri + Q" (sit1,a")
12: update QF to make Q?(s;, a;) close to y
13:  endif

14: until end
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Figure 3: RAM from the original paper (Mnih et al., 2014). A) Glimpse Sensor: Given the
coordinates of the glimpse and an input image, the sensor extracts a retina-like representation
p(x¢,1;—1) centered at [;_; that contains multiple resolution patches. B) Glimpse Network:
Given the location (I;—1) and input image x;, uses the glimpse sensor to extract retina
representation p(x, l;—1). The retina representation and glimpse location is then mapped
into a hidden space using independent linear layers parameterized by 92 and 9; respectively
using rectified units followed by another linear layer 03 to combine the information from
both components. The glimpse network f,(.;6},0,,65) defines a trainable bandwidth
limited sensor for the attention network producing the glimpse representation g;. C) Model
Architecture: Overall, the model is an RNN. The core network of the model f(.; 6},) takes
the glimpse representation g; as input and combining with the internal representation at
previous time step h;_1, produces the new internal state of the model ht. The location network
f1(:;0;) and the action network f,(.; 0,) use the internal state h; of the model to produce
the next location to attend to /; and the action/classification at respectively. This basic RNN

iteration is repeated for a variable number of steps.
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can be interpreted as a kind of off-policy strategy. Hasselt et al. (2016) show that the
overestimation is caused by the error estimation. In the original double Q-learning algorithm,
two value functions are learned by assigning each experience randomly to update one of the
two value functions. Hasselt et al. (2016) modify deep ()-network (DQN; Mnih et al. 2015)
with double @-learning. The method is similar to the target network trick mentioned above.
The training is shown in Algorithm 6.

Algorithm 6 Double DQN
1: We initialize Q = Q
repeat

Sample (s¢, ag, ¢, S¢41) based on Q)
Yy = 74 + max, Q(st+1, a)

update @) to make Q(s;, a;) close to y
every C' steps reset Q=0

A A o

until end

Sync ever
global N steps

Learner
DQN Loss

Parameter Server

Gradient Target Q
Network

Gradient
wrt loss

max, Q(s}a’; 0)

Sync
Bundled

Actor
argmax, Q(s,a; 0)

Figure 4: Distributed DQN from the original paper (Nair et al., 2015).The Gorila agent
parallelises the training procedure by separating out learners, actors and parameter server. In
a single experiment, several learner processes exist and they continuously send the gradients
to parameter server and receive updated parameters. At the same time, independent actors
can also in parallel accumulate experience and update their Q-networks from the parameter

SErver.

Recurrent Attention Model (RAM)

Mnih et al. (2014) propose a novel recurrent neural network model that is capable of extracting
information from an image or video by adaptively selecting a sequence of regions or locations
and only processing the selected regions at high resolution, where glimpse networks are

learned to select informative parts of images or videos, and recurrent models are used to
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generate several actions, each action will interact with the environment, and it outputs the
next state and current reward.

The architecture is shown in Figure 3. The number of glimpses is the length of the
recurrent networks. Without the gold actions provided, we have to reinforce it by maximizing
the accumulated rewards. In the paper or most cases, the goal is to predict the label. We
can regard the ground-true label as the gold actions, where f, is optimized in standard
classification problem, while f; is optimized with reinforcement learning.

Ba et al. (2015) extend the RAM to multiple object recognition, i.e., we have to assign
separate labels for all the objects in single image or videos. For each object, there is a sequence
of actions. The total number of actions are N * (S + 1), where N is the number of glimpses

and S is the number of objects.

Distributed Deep Q-Network (DQN)

Nair et al. (2015) follow the idea of the distributed system (DistBelief; Dean et al. 2012) and
make it possible to Distributively train DQN. The model architecture is shown in Figure 4.
In parameter server, they shard the parameters and each shard of parameters are updated in

different machine at parallel.

4

Figure 5: From the original paper (Wang et al., 2016). A popular single stream ()-network
(top) and the dueling Q-network (bottom). The dueling network has two streams to separately
estimate (scalar) state-value, V'(s) and the advantages for each action, A(s, a); the green

output module combines them. Both networks output ()-values for each action

The proposed duel DQN is shown in Figure 5

Dueling DQN
The insight behind Dueling DQN is that it is unnecessary to estimate the value of each action.

In some states, it is of paramount importance to know which action to take, but

in many other states the choice of action has no repercussion on what happens.

Wang et al. (2016) propose to use two streams to construct the ()-function, i.e.,

Q(s,a) =V(s) + A(s,a). (48)
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Because V7 (s) = E,r(s)[Q™ (5, @)], the advantage function A” (s, a) must satisfy E (s [A™ (s, a)] =
0. If we obtain the deterministic policy by a* = arg max,Q(s,a), the value function
V(s) = Q(s,a*) because we cannot obtain other actions given the deterministic policy. So
following the equation 48, the advantage A(s,a*) = 0.

The problem is that the V'(s) and A(s, a) are just paramterized estimation. If we directly
use the outputs of these function, we should add some constraints to make them satisfy the

definition.

This lack of identifiability is mirrored by poor practical performance when this

equation is used directly.

The equation 48 should be rewritten as:
Q(S, a;0,a, 6) = V<8; 0, 6) + (A(S, a,t, Oé) - maxa/EAA(Sv a/; 0, a)) (49)

So that for a* = argmax,ecQ(s,a;0,a, ) = argmaxy,c4A(s,a;0,a), we can get
Q(s,a*;0,a, ) =V (s;0, ). Furthermore, in order to make the stability of optimization,
the equation 49 is rewritten as:

Q(Sa a; 07 a, B) = V(S7 67 B) + (A<Sv a, 07 a) - ana’GAA(Sa a/; 07 a)) (50)

It deliver the similar result to equation 48 though it losses the definition of V" and A.

Exploitation and Exploration

In areal environment, we don’t know how often the state will happen or what is the probability
to reach one state from another state. If we don’t care about the transition probability, we can
directly optimize the model-free policy (we hardly reach the infrequent state). If not, we should
optimize the model-based policy (state space is too large). Brafman and Tennenholtz (2002)
propose a R-max algorithm that is simplified from E3 (Kearns and Koller, 1999). ! However,
these work become intractable when the size of states increases (Smart and Kaelbling,
2000; Kearns and Singh, 2002). Some works propose Bayesian Reinforcement Learning
(BRL) avoiding Alternatively, some works move the focus on incentivize exploration, i.e.,
methods of adding bonus to the rewards aiming to balance exploration and exploitation. A
lots of early works formatted the problem as Partially Observed MDP and used Bayesian
Reinforcement Learning (BRL) to solve the problem (Poupart et al., 2006; Asmuth, 2009;
Kolter and Ng, 2009; Sorg et al., 2010; Araya-Lopez et al., 2012).

Dueling DQN Dueling DQN decompose Q(s,a) = V(s) + A(s, a) with the constraint
Yo A(s,a) = 0. If we want to update Q(s, a) according to a sample s;, a;, we are more
likely to update the value of V'(s), resulting all other actions in Q(s, a) is updated, because

rewards on all actions are added by V' (s).

Thttp://nanjiang.cs.illinois.edu/files/cs598/note7.pdf
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Prioritized Replay The original replay take a buffer to train the () function with used
samples. However, these samples in buffer have different importances. Prioritized Replay

regards samples having high TD errors should be used in training more times (high priority).

Multi-step In TD training, we sample (s, a, 74, S¢+1), While in MC training, we sample
from current state to the end. We are looking for a balance between TD training and
MC training. We can look multiple steps when sampling, i.e., (s¢, a¢, ¢, ..., St+N), and

ar+N = arg max,Q(si+n, a). We do temporal difference on multiple steps like Q (s, a;) =

S e 4+ Q(se4s aren)-

Noisy Net The noisy net is trick for action exploration. Different from the original epsilon
greedy and others that sample actions for each times step, result sampled actions come from
different policy, Noisy Net adds noisy (Gaussian or others) to the parameter of () function,
resulting sampled actions come from the sample policy (because () function with noisy is

not changed during episode).
* Epsilon Greedy: a = arg max, Q(s,a) with a probability 1 — €

* Noisy Net: Q(s,a) = Q(s, a) + noisy, and then a = arg max, Q(s, a)

Distributional Q-function (s, a) is the accumulated reward expects to be obtained after
seeing state s and a. The different distribution could have the same expectation (mean).
Distributional Q-function aims to build the distributions for each action a for state s. The

original method use bars tricks.
Ensemble The rainbow system applies all these tricks together to obtain strong Q-functions.

0.0.1 Continuous actions

A~ A~

In the Algorithm 2, we have to obtain the max, Q(s;+1,a) and a;+1; = arg max, Q(s;+1,a).
But if the action space is continuous, it is hard to solve. We can do sampling from continues
space or using gradient ascent to find the optimal a. However, these methods are inefficient.
So we can let  network outputs a vector x(s), a matrix X(s) and a scalar v(s). Given a
continuous a:

Q(s.a) = —(a — u())"S(s)(a — u(s)) + v(s) (51)

and a = p(s) = arg max, Q(s,a)
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0.1 On-Policy to Off-Policy
0.2 Actor-Critic

We have the policy gradient method and Q-learning method. We can combine the two method
together. The gradient of the rewards in policy gradient is:

N Tn Tn

VoRg ~ — Z DD A"t — bV log py(ay|sy) (52)

nltlt/t

where > ", A ~tr% is the output of th ) function according to the definitions, i.e.,

Q™ (st ay) th’ “rp (53)

t'=t
, and the baseline b aims to make the step reward can be positive and negative. So b should be

the means over all possible values of Q(s¢, a;), i.e,
V7 (s) =b (54)

So the gradient of the rewards in actor-critic is:

N T,

VoRo~ 30 S QST af) — V™ (5})] Vo logpo(af |57). (55)

n 1t=1
Because Q™ (s¢, at) = E[ry + V(si+1)], the above equation can be rewritten as:

N T,

VoRy ~ ZZ ri+ V7T (st ) — V™ (s7)|Velog pg(ai|sy). (56)
n 1t=1

The training is shown in Algorithm 7. The useful tricks are 1) V function network and 7

Algorithm 7 Actor-Critic algorithm
1: We initialize V, 7

2: Sample data using 7 to environments
3: Update V function
4: Update 7 based on V function

network can share the parts of parameters, 2) exploration on smooth 7. Asynchronous A2C
(A3C) can calculate gradients on multiple CPU/GPU.

0.2.1 Pairwise Derivative Policy Gradient

When we want to learn @@ function using TD method, we have to regress the value on
the best action given by Q(s,a), y = r; + max, Q(si1,a). The argmax problem a* =
argmax (s, a) during gradient update, particular in continuous action space.

We can use GAN similar method to build a actor as generator to generate action, and
make () function as discriminator to ensure the action is the best action. The Q-learning is
modified to the Algorithm 8.
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Algorithm 8 Q-learning algorithm with actor-critic
1: We initialize Q = Q, 7 = 7

Sample (s¢, a, 1t, 5¢+1) based on 7 (epsilon greedy trick)

Store (s¢, ag, r¢, Si+1) to buffer

Sample (s;, a;, 74, S;+1) from buffer (replay trick)

y = ri+ maxgQ{smrrray Q(sip1, 7 (sip1))

update ) to make Q(s;, a;) close to y (target network trick)

update 7 to maximize Q(s;, w(s;))

every C steps reset Q=Q, 7=

0.3 Sparse Reward

If we want to complete a task that is very far from the current state, the reward is sparse. For
example, if we want to have a good job, we have to learn some skills and take the right actions.
The problem is that sometimes learning one skill or take a action could be assigned with a
small positive reward, leading a large negative reward in the final goal (get a good job). The

question is how to get the right reward for these actions that are far from the final objectives.

0.3.1 Reward Shaping

One solution is reward shaping, we manually design some reward function assigning reward
to all the possible action that we could take. For example, if we take “study” action, we will
be not happy (reward is negative), but it can lead to high positive reward in the future. So we
need to shape the reward of taking “study" action to be positive. There are many research

works on reward shaping.

Curiosity We can add a curiosity rewards to each action, R(7) = Z? r¢ + 7¢ where 7
is curiosity reward in the ¢ step. For example, r} = diff(5;,1,s,11) where 8;11 = f(ay, s¢),
showing that we use the network f to predict the next state $;11, and the curiosity reward
is the difference between the predicted 5;41 and the s;y; in our current policy 7. If the
difference is high that means next state is hard to predict (the future is hard to determine),
the reward is high that encourages curiosity. However, the problem is that if we make high
rewards to the uncertainty, we will ignore the important features. So instead of the states,
we can predict the features of the state, and ri = diff(¢)(3;11), #(s+1)) where ¢ could be a
small network (linear or non-linear transformation) that takes states and output the features
of the states. How to learn the ¢ function, we can use another network that takes ¢(s;) and
¢(s1+1) and outputs dy, ensuring d; and a; is as close as possible. Because s; takes action
ay to reach sy 1, and if the ¢s; and ¢s;1 can be used to recover a;, we can say ¢ function

outputs the main features of the states.
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Curriculum Learning The basic idea of curriculum learning is that we first train model
on the simple cases and then the model will be trained on harder cases. The question is
how to identify which cases are simple or hard. For example, we can use reverse curriculum
generation. Starts from the goal state, we sample several states around the goal states and
pick the top-k nearest states, and then we generate another set of several states around the
top-k nearest states, and so on. In the end, we can get the orders of the learning cases from

simplest to hardest.

Hierarchical RI. We can divide the task to several small task and for each task, we apply
RL methods.

0.4 No Rewards (Imitation Learning)

Imitation learning is to teach model behavor according to the examples, though we do not

have rewards.

0.4.1 Behavior Cloning

We can collect a lots of (s, a) and train a model 7(s) that takes s and outputs correct a. The
problems are that the observation is limited, and that we cannot have global optimization.
Noted that in RL, the rewards are the expectation of the whole trajectory. One more problem
is that the model will not learn the main features that leads the correct actions.

0.4.2 Inverse Reinforcement Learning

Rewards can be learnt from the correct (s, a), The idea is really simple, we can learn the
reward function from the expert trajectory 7, and use the reward function to predict trajectory
7. The objective is the rewards of the expert trajectory is always larger then the rewards of
the predicted trajectory, i.e., 25:1 R(m,) > 2711\[:1 R(7).
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