
Jianmging’s Notes

Contents

1 Sampling 3
1.1 Direct Sampling (Inverse Sampling) . 3
1.2 Rejection Sampling . 3
1.3 Importance Sampling . 3
1.4 Markov Chain Mento Carlo (MCMC) sampling 4

2 Variational Auto-Encoder (VAE) vs Expectation Maximization (EM) 4
2.1 Expectation-Maximization Algorithm (EM) for MLE 4
2.2 Mean-Field Variational Inference for MAP 4
2.3 VAE . 5

3 Generative Adversarial Network for NLP 6
3.1 Conditional GAN . 6
3.2 Unsupervised Conditional GAN . 7

3.2.1 Direct Transformation . 7
3.2.2 Projection to Common Space . 8

3.3 Generalization on GAN . 9
3.3.1 f -Divergence . 9
3.3.2 f -GAN . 9

3.4 Alternatives to f -GAN . 9
3.4.1 Least Square GAN (LSGAN) . 9
3.4.2 Wasserstein GAN (WGAN) . 10
3.4.3 Energy-Based GAN (EBGAN) . 10

3.5 Other Variants . 10
3.5.1 InfoGAN . 10
3.5.2 VAE-GAN . 11
3.5.3 BiGAN . 11

3.6 Applications . 12
3.7 Reinforcement Learning (RL) VS GAN in Generative Model 12

3.7.1 Maximum Likelihood vs RL . 12

4 Reinforcement Learning (RL) 13
4.1 On-Policy to Off-Policy . 14
4.2 Q-learning . 15

4.2.1 More magics . 17
4.2.2 Continuous actions . 18

4.3 Actor-Critic . 18

1

4.3.1 Pairwise Derivative Policy Gradient 19
4.4 Sparse Reward . 19

4.4.1 Reward Shaping . 19
4.5 No Rewards (Imitation Learning) . 20

4.5.1 Behavior Cloning . 20
4.5.2 Inverse Reinforcement Learning 20

5 Deep Learning 21
5.1 Forward and Backward Pass . 21
5.2 Basic Units . 21
5.3 Activate Function . 23

5.3.1 Tanh . 23
5.3.2 Sigmoid . 23
5.3.3 ReLU . 23
5.3.4 Parametric ReLU . 24
5.3.5 Exponential Linear Unit (ELU) 24
5.3.6 Scaled Exponential Linear Unit (SELU) 25
5.3.7 Swish . 25

6 Machine Learning 25

7 Meta-Learning 26
7.1 Model-Agnostic Meta-Learning (MAML) 26
7.2 Reptile . 28
7.3 Gradient by LSTM . 28
7.4 Metric-based Approach . 28

8 Life Long Learning 29
8.1 Elastic Weight Consolidation (EWC) . 29

9 Linguistics-Compositionality 29
9.1 Definition . 29
9.2 Other principles . 30
9.3 Formal Definition . 31
9.4 Arguments For Compositionality . 31
9.5 Arguments Against Compositionality . 32

2

1 Sampling

Monte Carlo Integration is used to compute the sum of the value f (x) over x in complex
structures. 1 ∫

f (x)dx (1)

It is hard to directly compute 1 if f (x) is complicated. We use sampling to estimate

E[f (x)] =
1
N ∑

i
f (xi) xi w.r.t. p(x) (2)

where x has a value from f (x) and x appear with the probability p(x)

1.1 Direct Sampling (Inverse Sampling)

We assume that the x appear uniformly, and the cumulative probability p(x) is h(x). 1) get y
from a uniform and obtain x = h−1(y) where the function h−1 is the inverse of the function h.
Then we can compute 2.

There are two reasons why we use the cumulative probability and inverse function, the
first reason is (straightforward) the value range of h−1 is [0,1] that equals to the range of
uniform and x to y is bidirectional projection, and there is a proof for second reason.

If the inverse function is not easily computed, we have to look for other sampling
methods.

1.2 Rejection Sampling

If x is hard to sample from p(x), we sample x from another distribution q(x) that is simple
and easy to sample. Sometime q(x) is uniform or Gaussian. We have to design a constant k
to make sure all the value from kq(x) is larger or equal to the value from p(x) (i.e., upper
bound).

We sample x from q(x) and randomly pick u from uniform, if u≤ p(x)
kq(x) , the x is accepted.

The intuition is that we pick the x which appear frequent and ignore the low-frequency x,
and high-frequency x contributes more to estimation.

1.3 Importance Sampling

Similar to the rejection sampling, importance sampling samples x from q(x) instead of
directly from p(x). The difference is that rejection sampling use uniform to choose which
one is accepted while importance sampling accept all with weights that are identified by
p(x)/q(x).

Both for rejection and importance sampling, p(x) is not necessary to be normalized,
usually we use p̄(x) instead of p(x). An example is to compute gradience on softmax over
the whole vocabulary in language models.

1https://www.jianshu.com/p/3d30070932a8,https://yq.aliyun.com/articles/627960

3

https://www.jianshu.com/p/3d30070932a8
https://yq.aliyun.com/articles/627960

1.4 Markov Chain Mento Carlo (MCMC) sampling

In sampling, what we want is that all x we sampled should satisfy p(x). However, we hardly
sample x from p(x), so the method above sample from a easy-and-similar distribution q(x).
In MCMC, we simulate a Markov chain that can use states (π(i)) and transition (Pi j) to satify
p(x), only if MC is converged. If MC is converged, we can sample from the states distribution
π(i), and next, we keep the current state π(i), π(j) or according to the Pi j, change to another
state to sample. 2

However, it is slow to converged, and then Metropolis-Hastings method is proposed,
which normalizes accept rate. However, the accept rate is expensitive to compute on large
dimension. Gibbs adopts conditions probability from different features (dimensions).3

2 Variational Auto-Encoder (VAE) vs Expectation Maximization
(EM)

For the observed variable x and latent variable z, pθ (x) =
∫

z pθ (x,z).
If we want to estimate the parameters θ , we can do Maximum Likelihood Estimation

(MLE) or Maximum-A-Posterior (MAP) estimation.4

2.1 Expectation-Maximization Algorithm (EM) for MLE

E step fixes θ and compute the distribution of pθ (z|x). 比如，聚类中隐变量z是数据
点属于某个类的概率。当固定θ时，我们可以得到每个样本属于某个类的概率。

再比如，词对齐中源语言端某个词对应到目标端的某个词的概率为隐变量z。当固
定θ时，我们可以得到词对齐概率

M step maximizes likelihood function, because we have outputs of E steps, similar to
supervised learning with the outputs of E steps. 我们有了E步因变量的概率，就可以
做sample生成大量带隐变量的样本，做类似于类监督的学习，更新θ

However, EM algorithm is broken if pθ (z|x) is intractable. In E steps, we cannot get the
distribution over z, so we cannot update θ in M steps. 5

2.2 Mean-Field Variational Inference for MAP

Sometimes we can use a another distribution family qφ (z) to approximate the posterior
pθ (z|x).

N

∏
i=1

qφi(z)≈
N

∏
i=1

pθ (z|x) (3)

2https://zhuanlan.zhihu.com/p/30003899,https://www.cnblogs.com/xbinworld/p/4266146.
html

3https://applenob.github.io/machine_learning/MCMC/
4https://maurocamaraescudero.netlify.app/post/variational-auto-encoders-and-the-expectation-maximization-algorithm/
5http://sofasofa.io/tutorials/gmm_em/

4

https://zhuanlan.zhihu.com/p/30003899
https://www.cnblogs.com/xbinworld/p/4266146.html
https://www.cnblogs.com/xbinworld/p/4266146.html
https://applenob.github.io/machine_learning/MCMC/
https://maurocamaraescudero.netlify.app/post/variational-auto-encoders-and-the-expectation-maximization-algorithm/
http://sofasofa.io/tutorials/gmm_em/

where each data point has an independent φi. if they share the same φ across the whole data
point, it is called amortized inference.

2.3 VAE

VAE are auto-encoding variational bayes (AEVB) where the probability distributions in the
latent variable models are parametrized by Neural Networks, and they share the paramters
for each data pointer (amortized inference)

qφ (z|x) is used to approximate true posterior distribution pθ (z|x). Our purpose is to
minimize the difference between qφ (z|x) and pθ (z|x), so we consider KL-divergence

KL(qφ (z|x)||pθ (z|x))
= Eqφ

[logqφ (z|x)− log pθ (z|x)] KL definition
= Eqφ

[logqφ (z|x)− log pθ (x,z)+ log pθ (x,z)− log pθ (z|x)]
= Eqφ

[− log pθ (x,z)
qφ (z|x) +(log pθ (x,z)

pθ (z|x))]

= Eqφ
[− log pθ (x,z)

qφ (z|x) + log pθ (x)] Bayes

=−Eqφ
[log pθ (x,z)

qφ (z|x)]+ log pθ (x) Take p out of the expectation on q

:=−Lθ ,φ (x)+ log pθ (x)
(4)

Lθ ,φ (x) is evidence lower bound (ELBO). If we maximize ELBO, we will minimize KL
which means that q will be closer to p, and also we will maximize log pθ (x) because KL is
always equal or larger than 0.

Meanwhile, from Eq:4, the ELBO can be rewrite as

Lθ ,φ (x)
= log pθ (x)−KL(qφ (z|x)||pθ (z|x))
= log pθ (x)−Eqφ

[logqφ (z|x)− log pθ (z|x)]
= Eqφ

[log pθ (x)− logqφ (z|x)+ log pθ (z|x)]
= Eqφ

[log pθ (x)+ log pθ (z|x)− logqφ (z|x)]
= Eqφ

[log pθ (x)pθ (z|x)− logqφ (z|x)]
= Eqφ

[log pθ (x|z)pθ (z)− logqφ (z|x)] Bayes
= Eqφ

[log pθ (x|z)+ log pθ (z)− logqφ (z|x)]
= Eqφ

[log pθ (x|z)]−Eqφ
[logqφ (z|x)− log pθ (z)]

= Eqφ
[log pθ (x|z)]−KL(qφ (z|x)||pθ (z))

(5)

This is the sum of two terms: expected reconstruction error and the KL divergence between
the approximation and the latent prior.

For ELBO optimization, ELBO is not differential on φ , because there is expectation on qφ .
We use the reparamterization trick, which rewrite the sample z∼ qφ (z|x) as a deterministic
function of x and ε , parameterized by φ , i.e. z = gφ (x,ε), ε ∈ N(0,1).

5

3 Generative Adversarial Network for NLP

Given random noisy (vector), an generator G outputs texts, while given texts, an discriminator
D judges the texts. Actually both generators and discriminators can do generation (only
positive examples are given). Generators do bottom-up generation, e.g., generators build
the text sequentially. Discriminator do top-down generation, e.g., sampling the negative
examples to train the model and higher the scores of positive examples and lower the scores
of negative examples.

The motivation of GAN: in image recognition, image 1 can be written in different ways,
but it is still image of number 1. If we only use generator, the generators will average the
pixel scores both different 1s. If we only use discriminator, the sampling is the problem and
sometimes argmaxx∈X has intractable X.

The basic idea (goal) of GAN: G generates the negative examples to fool D, and D is to
be smart to judge the generated and true examples. Algorithm 1 is the basic training method
for GAN. where sometimes m = n. Noted that steps 1-6 train the discriminator, and steps

Algorithm 1 the train on GAN
1: sample noisy z1, ...,zm from p(z)
2: given z1, ...,zm, G generate the negative examples x̄1, ..., x̄m

3: sample positive examples x1, ...,xn from observed data.
4: fix G and update D to maximize V
5: V = 1

n ∑
n
i=1 logD(xi)+

1
m ∑

m
i=1 log(1−D(x̄i))

6: θd ← θd +λ∇V
7: sample noisy z1, ...,zm from p(z)
8: given z1, ...,zm, G generate the negative examples x̄1, ..., x̄m

9: fix D and update G to maximize V
10: V = 1

m ∑
m
i=1 log(D(x̄i))

11: θg← θg +λ∇Vg

7-11 train the generator. Sometimes we should train multiple steps on the discriminator
before train the generator, which purpose is to find the JS divergence between pg and pdata.
Sometimes we should just slightly change the generator, which purpose is to ensure the JS
divergence will be smaller and converged. In lines 9-11, fix D and update G to minimize V
which is the same to line 5, but the first term has no G, so minimize V = 1

m ∑
m
i=1 log(1−D(x̄i))

(Minmax GAN) that equals to maximize V = 1
m ∑

m
i=1 log(D(x̄i))(Non-saturating GAN).

3.1 Conditional GAN

Sometimes, we have to generate the text given the constraints (e.g., sentiments and other
labels, semantics and other descriptions). The input of G are the noisy z and the conditions
c, and the output is the text. The input of D are the generated text x̄, the conditions c and

6

the true text x, and the output is judgement. The positive judgement is that text is true and
conditions are paired to the text. Algorithm 2 is the training method for condition GAN

Algorithm 2 the train on condition GAN
1: sample noisy z1, ...,zm from p(z)
2: sample condition c1, ...,cm from the observed data
3: given z1, ...,zm and c1, ...,cm, G generate the negative examples x̄1, ..., x̄m

4: take positive examples x1, ...,xm from observed data according to the sampled condition
c1, ...,cm

5: sample x̂1, ..., x̂m from the observed data, w.r.t x̂i and ci (i ∈ [1,m]) are not paired
6: fix G and update D
7: Vd = 1

n ∑
n
i=1 logD(ci,xi)+

1
m ∑

m
i=1 log(1−D(ci, x̄i))+

1
m ∑

m
i=1 log(1−D(ci, x̂i))

8: θd ← θd +λ∇Vd

9: sample z1, ...,zm from p(z)
10: sample condition c1, ...,cm from the observed data
11: given z1, ...,zm and c1, ...,cm, G generate the negative examples x̄1, ..., x̄m

12: fix D and update G
13: Vg =

1
m ∑

m
i=1 log(D(ci, x̄i))

14: θg← θg +λ∇Vg

Text-to-image application: Stack GAN generates the small image (64x64) and then
generates the large image (128x128), which is similar to coarse-to-fine generation. Image-
to-Image application: Patch GAN judges the input on local (patch) images instead of the
whole image. These variants make the training easier.

However, conditional GAN always requires the pairs of conditions and texts. If we don’t
know which conditions responds to the texts, we have to do unsupervised conditional learning
on GAN

3.2 Unsupervised Conditional GAN

For example, in the task of the style transfer, we have set of text in one style and set of text
in anther style, but we don’t know alighment between text in two styles (i.e., which two texts
are related).

3.2.1 Direct Transformation

The input of the generator G is the text in style A, and the output is the text in style B. The
input of the discriminator D is the generated text in style B and the true random text in style
B, and the D judges which one is generated. The problem is that the generator will generate
the style B but which totally different from the original input.

7

Ignore Ignore the problem, just train the model. It can work. One possible reason is that
the generator will not largely change the input. (Tomer Galanti, ICLR, 2018)

Consistency on Input and Output Add another loss value to make sure the input text is
closed to the output text in generators. For example, we can use another pretrained encoder to
encode the input and outputs, and make their hidden representation closer. (Yaniv Taigman,
ICLR, 2017)

Cycle Consistency (CycleGAN) Add another generator D̄ which take the output of the
generator D to reconstruct the input, ensuring the reconstructed text is closer to the original
input text (cycle is A→ B→ A). So D : A→ B and D̄ : B→ A. In addition, we can also do
another cycle B→ A← B). But in the additional cycle we should use another discriminator
D to judge style A. (Jun-Yan Zhu, ICCV, 2017) An arguments: cycle consistency will not
ensure the output of the generator can keep the key feature of original input and it will
still output a really different text. (Casey Chu, NIPS, 2017) Other cycle consistency GAN:
DiscoGAN, DualGAN.

Multiple Style (StarGAN) similar to CycleGAN, but it adds a label as a control to show
the style (e.g., 0100101).

3.2.2 Projection to Common Space

Generator will be divided to two parts, a encoder encodes the input to vectors and a decoder
reconstruct the input according to the vectors. For style A and B, we have encA and decA, and
encB and decB. In addition, we have discriminator DA and DB to judge the text is generated
or not for style A and B. So we have reconstruction error and discriminator error for style
A and B. However, the style A and the style B is independent. How to make connection
between them.

Structure Sharing We can share the parts of encA and encB, and share the parts of decA

and decB, or we can add a metric loss to make these parts more similar (not totally share).

Hidden Space discriminator We can add another discriminator to judge the hidden repre-
sentation comes from style A or style B.

Cycle Consistency A→ encA → hA → decB → B→ encB → hB → decA → A. Similar
thing can be taken on style B.

Semantic Consistency A→ encA→ hA→ decB→ B→ encB→ hB, and then make hA is
closer to hB. Similar thing can be taken on style B. DTN (Yaniv Taigman, ICLR, 2017) and
XGAN (Amelie Royer, arxiv, 2017)

8

3.3 Generalization on GAN

The original GAN is proposed by minimizing the KL divergence between generated data
distribution and true data distribution. In fact, KL divergence can be replaced with other
divergence metrics.

3.3.1 f -Divergence

Given two distribution q and p, f -divergence is defined as:

D f (p||q) =
∫

x
q(x) f (

p(x)
q(x)

)dx (6)

where f (x) is any convex function and f (1) = 0. For every convex function f (x), there is
conjugate function:

f ∗(t) = maxx∈dom f {xt− f (x)} (7)

f ∗(t) is also a convex function (proof) and f (x) is the conjugate function of f ∗(t). If
f (x) = x logx, f ∗(t) = exp(t−1).

3.3.2 f -GAN

f -GAN aims to minimize the f -divergence. The equation 6 can be rewritten as:

D f (p||q) =
∫

x q(x) f (p(x)
q(x))dx

=
∫

x q(x) (maxt∈dom(f ∗){
p(x)
q(x) t− f ∗(t)})dx

≥
∫

x q(x)(p(x)
q(x)D(x)− f ∗(D(x)))dx

=
∫

x p(x)D(x)−
∫

x q(x) f ∗(D(x))dx
= Ex∼p(x)[D(x)]−Ex∼q(x)[f ∗(D(x))]

(8)

where D(x) is a function taking a scalar and outputting another scalar. If the D function is
optimal that outputs optimal t given x, the = is satisfied. In GAN, p(x) is regarded as the
true distribution and q(x) is regarded as the generated distribution.

D f (pdata||pG) ≈maxD Ex∼pdata [D(x)]−Ex∼pG [f
∗(D(x))] (9)

G∗ = arg minGD f (pdata||pG)

= arg minG maxD Ex∼pdata [D(x)]−Ex∼pG [f
∗(D(x))]

= arg minG maxD V (G,D)

(10)

There are many divergence function, so there will be many variants of GAN.

3.4 Alternatives to f -GAN

3.4.1 Least Square GAN (LSGAN)

We take the original GAN as an example of f -GAN. The value function is V = 1
n ∑

n
i=1 logD(xi)+

1
m ∑

m
i=1 log(1−D(x̄i)), which is same to the binary classification. If the discriminator is very

9

good, they will assign low scores to generated samples (negative samples) and assign high
scores to true samples (positive samples). It will be hard to train a good generator making
pG ≈ pdata, that could be a reason why GAN is hard to train. For discriminators, LSGAN
changes the classification problem to regression problem (sigmoid to linear).

3.4.2 Wasserstein GAN (WGAN)

WGAN direct moves pG to pdata by measuring the distance between pG and pdata. Different
from the objective function on f -GAN that is

V (G,D) = Ex∼pdata [D(x)]−Ex∼pG [f
∗(D(x))]

V (G,D) = 1
n ∑

n
i=1 logD(xi)+

1
m ∑

m
i=1 log(1−D(x̄i)) orignal GAN

(11)

WGAN use the alternative objective function:

V (G,D) = Ex∼pdata [D(x)]−Ex∼pG [D(x)]
V (G,D) = 1

n ∑
n
i=1 D(xi)− 1

m ∑
m
i=1 D(x̄i))

(12)

where D ∈1-Lipschize. K-lipschize functions should satisfy || f (x1)− f (x2)|| ≤ K||x1− x2||,
i.e., the change of inputs should less than the change of outputs if K = 1. If the discriminator
function is 1-Lipschize, it will be smooth and not too strong. The implementation of the
constraints on D(x) is weight clipping to[−c,c].

However the weight clipping is not good, WGAN-GP is proposed using Gradient Penalty
(GP) i.e., ||∇xD(x)|| ≤ 1 for all x.

maxDV (G,D) ≈maxDEx∼pdata [D(x)]−Ex∼pG [D(x)]−λ
∫

x max(0, ||∇xD(x)||−1)dx
= maxDEx∼pdata [D(x)]−Ex∼pG [D(x)]−λEx∼ppenalty [max(0, ||∇xD(x)||−1)]

(13)
Here, x ∼ ppenalty can be sampled from the average pdata and pG. The another variants is
change max function to square function:

maxDV (G,D)≈maxDEx∼pdata [D(x)]−Ex∼pG [D(x)]−λEx∼ppenalty [(||∇xD(x)||−1)2] (14)

There are many algorithms how to do penalty sampling.

3.4.3 Energy-Based GAN (EBGAN)

It change the discriminator with auto-encoder, the input is the generated or true examples, the
output is a scalar score. The score is high for true examples, and low for generated examples.
Noted that energy margin is a trick.

3.5 Other Variants

3.5.1 InfoGAN

In original GAN, we will ranomly choose a vector, and given the vector, the generator
generates examples, and the discriminator should judge if inputs is real or generated. However,

10

we cannot control the input to generate what we want. InfoGAN further divide the random
input z of generator to (z,c), where z is the random noise and c is the set of features that are
used to generate examples. So in addition, infoGAN add another decoder to predict the c
given the generated examples x. The process is similar to autoencoder that makes x→ z→ x,
but the difference is that infoGAN makes (z,c)→ x→ c.

3.5.2 VAE-GAN

VAE-GAN can be seen as VAE with an discriminator (x→ z→ x + discriminator) or GAN
with an encoder (x→ z + GAN). In general, there are three parts, encoder (x→ z), decoder
(z→ x), and discriminator (x→ scalar).

The objective of encoder is minimizing the reconstruction error and z is closer to nor-
mal distribution. The objective of decoder is minimizing the reconstruction error and fool
discriminators. The objective of decoder is judge if the input is real, or generated examples.

Training is shown in Algorithm 3. For further improvement, the discriminator can do

Algorithm 3 the train on VAE-GAN
1: sample examples x1, ...,xm from observed data
2: generate latent variable z̄1, ..., z̄m for each x by encoder
3: generate examples x̄1, ..., x̄m for each z̄ by decoder
4: sample noise z1, ...,zm from p(z)
5: generate examples x̂1, ..., x̂m for each z by decoder
6: update encoder by decreasing ||x̄i− xi|| and decreasing KL(p(z̄|x)||p(z))
7: update decoder by decreasing ||x̄i− xi|| and increasing D(x̄i) and D(x̂i)

8: update discriminator by increasing D(xi) and decreasing D(x̄i) and D(x̂i)

3-classes classification on real, generated and reconstructed examples.

3.5.3 BiGAN

Different from VAE-GAN (x→ z→ x→ scalar), BiGAN separate encoder and decoder
by making independent x→ z and z→ x, i.e., the encoder output z is not the decoder input
z. So the input of the discriminator is (x,z), and the objective is the same judging whether
the (x,z) comes from encoder or decoder. We can put the input and the output of encoder
as p(x, z̄), and we can also put the input and output of decoder as q(x̄,z). The objective of
encoder-decoder is to make p and q closer, and discriminator tries to discriminate them. The
idea is similar to original GAN.

The training is shown in Algorithm 4. There is another variant called (tripleGAN). For
the BiGAN, we can do some domain adversarial tasks.

11

Algorithm 4 the train on BiGAN
1: sample examples x1, ...,xm from observed data
2: generate latent variable z̄1, ..., z̄m for each x by encoder
3: sample noise z1, ...,zm from p(z)
4: generate examples x̂1, ..., x̂m for each z by decoder
5: update discriminator by increasing D(xi, z̄i) and decreasing D(x̂i,zi)

6: update encoder and decoder by decreasing D(xi, z̄i) and increasing D(x̂i,zi)

3.6 Applications

Take Photo Editing as an example. The task is that given an image and an constraints, we
need to output the another image keep the most of information of the given image with the
constraints (e.g., changing colors or shapes). The general idea is that we can encode the
given image to hidden vectors z0, move the hidden vectors slightly to another hidden vectors
z in vector spaces with the constraints direction, and then generate the output image on z.
The process is x→ z0→ z→ x̄.

Auto-encoder can do x→ z0 where the job of the encoders is to encode the x to hidden
vectors z0. z0→ z→ x̄ is a generation problem, the standard GAN can be applied.

z∗ = arg minz U(G(z))+λ1||z− z0||2−λ2D(G(z)) (15)

where (D,G) is the fully-trained GAN, and U is customized function to measure if the
generated image satisfy the constraints. Other task like image resolution/completion using
Conditional GAN.

3.7 Reinforcement Learning (RL) VS GAN in Generative Model

The main difference is that RL updates the generators from the human reward, and the GAN
updates generators from the discriminator reward.

3.7.1 Maximum Likelihood vs RL

Suppose we want to build a model where the input is c and output is x. The maximum
likelihood objective function is

CEθ =
1
N

N

∑
i=1

log pθ (xi|ci) (16)

and the gradients are

∇θCEθ =
1
N

N

∑
i=1

∇θ log pθ (xi|ci) (17)

In RL, the objective function is to maximum the rewards:

Rθ = ∑c p(c)∑x R(x,c)pθ (x|c)
= Ec∼p(c),x∼pθ (x|c)[R(x,c)]
≈ 1

N ∑
N
i=1 R(xi,ci)

(18)

12

where R(x,c) is the reward from human metrics, and we can sample a lots of pairs of (x,c)
to approximate the expectation. If we do sampling to approximate the expectation, the θ is
reduced so that we cannot update θ directly by gradient. So step back (policy gradient):

∇θ Rθ = ∑c p(c)∑x R(x,c)∇θ pθ (x|c)
= ∑c p(c)∑x R(x,c)pθ (x|c)∇θ log pθ (x|c)
= Ec∼p(c),x∼pθ (x|c)[R(x,c)∇θ log pθ (x|c)]
= 1

N ∑
N
i=1 R(xi,ci)∇θ log pθ (xi|ci)

(19)

By comparing equations 17 and 21, we can see the RL add weight/reward, R(xi,ci), to the
gradient.

However, the R(xi,ci) is the final reward. Sometimes, the reward is always positive.
Although this, we can ignore the problem, because reward can be small positive and large
positive. Anyway, we can add a baseline (threshold) to make the reward negative when they
are below the baseline. So we can rewrite the equation 21 to be

∇θ Rθ = 1
N ∑

N
i=1[R(xi,ci)−b]∇θ log pθ (xi|ci) (20)

We generate thing by steps, we hope there is step-level rewards. Take sequential generation
as example. The equation can be rewritten as

∇θ Rθ = 1
N ∑

N
i=1[R(xi,ci)−b]∇θ log pθ (xi|ci)

= 1
N ∑

N
i=1[Q(xi j,ci)−b]∇θ log pθ (xi j|xi,< j,ci)

(21)

4 Reinforcement Learning (RL)

Given a trajectory τ = [s1,a1,s2,a2, ...,sT ,aT], pθ (τ) is the probability of a trajectory τ given
by a model parameterized by θ over all the possible trajectories. For a state st , the model
will output an action at and get the reward rt and R(τ) = ∑

T
t=1 rt . So if the τ is given by the

model, the expected reward of the model θ is:

R̄θ = ∑
τ

pθ (τ)R(τ) (22)

How to update the θ to maximize the reward R̄θ . We can use the gradient ascent by θ ←
θ +λ∇θ R̄θ . The policy gradient is

∇θ R̄θ = ∑τ R(τ)∇θ pθ (τ)

= ∑τ R(τ)pθ (τ)∇θ log pθ (τ)

= Eτ∼pθ (τ)[R(τ)∇θ log pθ (τ)]

≈ 1
N ∑

N
n=1 R(τn)∇θ log pθ (τ

n)

= 1
N ∑

N
n=1 ∑

Tn
t=1 R(τn)∇θ log pθ (an

t |sn
t)

(23)

There is an first-order assumption that action is outputted according to the current state. The
general training process is that we can use the current model θ to generate many samples
(st ,at) and rewards rt to update the model.

13

Problem 1 is that sometimes, the rewards are always positive, so we add a baseline to
make the reward negative if it is below the baseline

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[R(τn)−b]∇θ log pθ (an
t |sn

t) (24)

Problem 2 is that the reward R(τ) is the total reward of whole trajectory τ , and sometimes
one action is bad but the total reward is positive or one action is good but the total reward is
negative. So we change R(τn) = ∑

Tn
t=1 rn

t to be the reward from the current state to the end

∑
Tn
t ′=t rn

t ′ :

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[
Tn

∑
t ′=t

rn
t ′−b]∇θ log pθ (an

t |sn
t) (25)

Problem 3 is that the future rewards are not that important (empirically), so we add a
decay to the future rewards, changing ∑

Tn
t ′=t rn

t ′ to ∑
Tn
t ′=t γ t ′−trn

t ′ where γ < 1:

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[
Tn

∑
t ′=t

γ
t ′−trn

t ′−b]∇θ log pθ (an
t |sn

t) (26)

usually, the baseline b is predicted by a neural network, and R(τn) is estimated by Aθ (st ,at)

that compute the future rewards using the model θ .

4.1 On-Policy to Off-Policy

All the things above is on-policy training. The general difference between on-policy and
off-policy is that on-policy use the learned θ to interact with environment to obtain samples
to train θ , while off-policy uses the another fixed θ ′ to obtain samples to train θ . In order to
address the off-policy, we use the importance sampling strategy.

Ex∼p(x)[f (x)] = Ex∼q(x)[
p(x)
q(x)

f (x)] (27)

Noted that the expectation is the same but the variances are different, i.e. Var[f (x)] 6=
Var[p(x)

q(x) f (x)]. So the off-policy gradient is

∇θ R̄θ = Eτ∼pθ (τ)[R(τ)∇θ log pθ (τ)]

= Eτ∼p
θ ′ (τ)

[pθ (τ)
p

θ ′ (τ)
R(τ)∇θ log pθ (τ)]

(28)

If the action only depends on currents state, the gradient can be rewritten as:

∇θ R̄θ = E(st ,at)∼πθ
[Aθ (st ,at)∇θ log pθ (at |st)]

= E(st ,at)∼π
θ ′
[pθ (st ,at)

p
θ ′ (st ,at)

Aθ ′(st ,at)∇θ log pθ (at |st)]

= E(st ,at)∼π
θ ′
[pθ (at |st)pθ (st)

p
θ ′ (at |st)p

θ ′ (st)
Aθ ′(st ,at)∇θ log pθ (at |st)]

= E(st ,at)∼π
θ ′
[pθ (at |st)

p
θ ′ (at |st)

Aθ ′(st ,at)∇θ log pθ (at |st)] pθ (st)≈ pθ ′(st)

(29)

So the objective function is total reward:

J(θ) = R̄θ = E(st ,at)∼π
θ ′
[pθ (at |st)

p
θ ′ (at |st)

Aθ ′(st ,at)] (30)

14

The off-policy is based on importance sampling, so we have to make θ and θ ′ close addressing
variance issue. So the objective function should add regularization term to make the θ and θ ′

close:
JPPO(θ) = R̄θ = E(st ,at)∼π

θ ′
[pθ (at |st)

p
θ ′ (at |st)

Aθ ′(st ,at)]−βKL(θ ,θ ′) (31)

where KL(θ ,θ ′) makes the constraints on behaviors (actions at) not on parameters, which is
called Proximal Policy Optimization (PPO) or Trust Region Policy Optimization (TRPO).
The PPO/TRPO algorithm is shown in Algorithm 5. There is a improved PPO algorithm

Algorithm 5 PPO/TRPO algorithm

1: using θ ′ to interact with the environment to collect st , at and compute Aθ ′(st ,at)

2: optimizing JPPO(θ) = E(st ,at)∼π
θ ′
[pθ (at |st)

p
θ ′ (at |st)

Aθ ′(st ,at)]−βKL(θ ,θ ′)
3: if KL(θ ,θ ′)> KLmax, increase β

4: if KL(θ ,θ ′)< KLmin, decrease β

called PPO2 by removing KL term with cliping strategy:

JPPO2(θ) = E(st ,at)∼π
θ ′
[min(pθ (at |st)

p
θ ′ (at |st)

Aθ ′(st ,at),clip(pθ (at |st)
p

θ ′ (at |st)
,1− ε,1+ ε)Aθ ′(st ,at))]

(32)
where clip(pθ (at |st)

p
θ ′ (at |st)

,1− ε,1+ ε) means if pθ (at |st)
p

θ ′ (at |st)
< 1− ε , return 1− ε and if pθ (at |st)

p
θ ′ (at |st)

>

1+ ε , return 1+ ε . Intuitively

• if Aθ ′(st ,at) positive and at is good, so we have to make pθ (at |st) larger. If pθ (at |st)

is too small and pθ (at |st)
p

θ ′ (at |st)
is smaller than 1− ε , we use 1− ε instead, but it cannot be

larger than 1+ ε

• Aθ ′(st ,at) negative and at is bad, so we have to make pθ (at |st) smaller. If If pθ (at |st)

is too larger and pθ (at |st)
p

θ ′ (at |st)
is larger than 1+ ε , we use 1+ ε instead, but it cannot be

smaller than 1− ε

4.2 Q-learning

Different from on-policy and off-policy that aim to learn a policy, Q-learning is value-based
method that aims to learn a critic to evaluate how good the current state is. Firstly, we define
V π(st) as the critic to evaluate how good the actor π in the current st . The actor outputs a
action given a specific state, i.e., a = π(s). For example, V π is a neural network where the
input is state s and the output is a scalar (score) to say how many scores we will obtained
after visiting s.

There are two method to estimate V π(s). 1) MC-based approaches. We compute the
reward Gt until the end of interactions, st → V π → V π(st)→ Gt . 2) Temporal-difference
(TD) approaches. We don’t have to play to the end, and given a sample st ,at ,rt ,st+1, V π(st)−
V π(st+1) = rt . For example, we can use neural network to obtain V π(st) and V π(st+1), and
then, we can update the neural network V π by regression to the difference rt . MC methods
have high variance while TD methods might be inaccurate.

15

Alternative to V π(s) that only consider the state, we define a function Qπ(s,a) that is
accumulated reward expects to be obtained after taking action a at state s. Given Qπ(s,a),
we can find a π ′ better than π . The better means V π ′(s)≥V π(s) for all state. How to find
π ′? for each state we take the action π ′(s) = arg maxa Qπ(s,a). The proof is that

V π(s) = Qπ(s,π(s)) ≤maxaQπ(s,a)
= Qπ ′(s,π ′(s))
= E[rt +V π(st+1)|st = s,at = π ′(st)]

≤ E[rt +Qπ ′(s,π ′(st+1))|st = s,at = π ′(st)]

......

≤V π ′(s)

(33)

Usually, TD method is used to train Q function. But there are some problems.
Problem 1. If we use TD to train model, we have to do regression both on the Qπ(st ,at) =

rt +Qπ(st+1,π(st+1)) and Qπ(st+1,π(st+1)) = Qπ(st ,at)− rt . The both side of the equation
are changed that makes the training hard and not converged. We fix one value as target
and only update Q function by regression on one, i.e., Qπ(st ,at) = rt +Qπ(st+1,π(st+1)) or
Qπ(st+1,π(st+1)) = Qπ(st ,at)− rt but not both. So at the beginning of the training, we will
copy Q to Q̂ that is fixed to produce target, and Q is updated. After several round updating,
we will copy the updated Q to Q̂ and continue training.

Problem 2. The Q-learning heavily depends on sampling. If states and actions are not
sampled (not seen), we will always not make the unseen action. So if we do sampling, we
have to take more explorations. 1) Epsilon Greedy. a = arg maxa Q(s,a) with a probability
1− ε , otherwise a is random picked. 2) Boltzmann Exploration. p(a|s) = exp(Q(s,a))

∑a exp(Q(s,a)) .
Problem 3. For one actor π , the samples are not much different. So we build a buffer to

store the samples from different π , and replay (train) Q function by picking a batch from the
buffer. This trick can make training samples diverse that similar to off-policy.

The training of Q function is shown in Algorithm 6 by considering the above 3 problems.

Algorithm 6 Q-learning algorithm

1: We initialize Q = Q̂
2: Sample (st , at , rt , st+1) based on Q (epsilon greedy trick)
3: Store (st , at , rt , st+1) to buffer
4: Sample (si, ai, ri, si+1) from buffer (replay trick)
5: y = ri +maxa Q̂(si+1,a)
6: update Q to make Q(si,ai) close to y (target network trick)
7: every C steps reset Q̂ = Q

16

4.2.1 More magics

Double DQN Q function always over-estimate the rewards, because Q(st ,at)= rt +maxaQ(st+1,a)
which tends to select action that is over-estimated. So Double DQN use

Q(st ,at) = rt +Q′(st+1,arg maxaQ(st+1,a)) (34)

If Q over-estimate action a, a is not over-estimated by Q′, and also if Q′ has an over-estimated
action a, a might be not chosen by Q. In fact, in the target network trick, target network is
regarded as Q′.

Dueling DQN Dueling DQN decompose Q(s,a) = V (s) + A(s,a) with the constraint

∑a A(s,a) = 0. If we want to update Q(s,a) according to a sample st ,at , we are more
likely to update the value of V (s), resulting all other actions in Q(s,a) is updated, because
rewards on all actions are added by V (s).

Prioritized Replay The original replay take a buffer to train the Q function with used
samples. However, these samples in buffer have different importances. Prioritized Replay
regards samples having high TD errors should be used in training more times (high priority).

Multi-step In TD training, we sample (st , at , rt , st+1), while in MC training, we sample
from current state to the end. We are looking for a balance between TD training and MC
training. We can look multiple steps when sampling, i.e., (st , at , rt , ..., st+N), and at+N =

arg maxaQ(st+N ,a). We do temporal difference on multiple steps like Q(st ,at) = ∑
t+N
t ′=t rt ′+

Q(st+N ,at+N).

Noisy Net The noisy net is trick for action exploration. Different from the original epsilon
greedy and others that sample actions for each times step, result sampled actions come from
different policy, Noisy Net adds noisy (Gaussian or others) to the parameter of Q function,
resulting sampled actions come from the sample policy (because Q function with noisy is
not changed during episode).

• Epsilon Greedy: a = arg maxa Q(s,a) with a probability 1− ε

• Noisy Net: Q̃(s,a) = Q(s,a)+noisy, and then a = arg maxa Q̃(s,a)

Distributional Q-function Q(s,a) is the accumulated reward expects to be obtained after
seeing state s and a. The different distribution could have the same expectation (mean).
Distributional Q-function aims to build the distributions for each action a for state s. The
original method use bars tricks.

Ensemble The rainbow system applies all these tricks together to obtain strong Q-functions.

17

4.2.2 Continuous actions

In the Algorithm 6, we have to obtain the maxa Q̂(si+1,a) and ai+1 = arg maxa Q̂(si+1,a).
But if the action space is continuous, it is hard to solve. We can do sampling from continues
space or using gradient ascent to find the optimal a. However, these methods are inefficient.
So we can let Q network outputs a vector µ(s), a matrix Σ(s) and a scalar v(s). Given a
continuous a:

Q(s,a) =−(a−µ(s))T
Σ(s)(a−µ(s))+ v(s) (35)

and a = µ(s) = arg maxa Q̂(s,a)

4.3 Actor-Critic

We have the policy gradient method and Q-learning method. We can combine the two method
together. The gradient of the rewards in policy gradient is:

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[
Tn

∑
t ′=t

γ
t ′−trn

t ′−b]∇θ log pθ (an
t |sn

t) (36)

where ∑
Tn
t ′=t γ t ′−trn

t ′ is the output of th Q function according to the definitions, i.e.,

Qπθ (st ,at) =
Tn

∑
t ′=t

γ
t ′−trn

t ′ (37)

, and the baseline b aims to make the step reward can be positive and negative. So b should
be the means over all possible values of Q(st ,at), i.e,

V πθ (st) = b (38)

So the gradient of the rewards in actor-critic is:

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[Qπθ (sn
t ,a

n
t)−V πθ (sn

t)]∇θ log pθ (an
t |sn

t). (39)

Because Qπθ (st ,at) = E[rt +V (st+1)], the above equation can be rewritten as:

∇θ R̄θ ≈
1
N

N

∑
n=1

Tn

∑
t=1

[rn
t +V πθ (sn

t+1)−V πθ (sn
t)]∇θ log pθ (an

t |sn
t). (40)

The training is shown in Algorithm 7. The useful tricks are 1) V function network and π

Algorithm 7 Actor-Critic algorithm
1: We initialize V , π

2: Sample data using π to environments
3: Update V function
4: Update π based on V function

network can share the parts of parameters, 2) exploration on smooth π . Asynchronous A2C
(A3C) can calculate gradients on multiple CPU/GPU.

18

4.3.1 Pairwise Derivative Policy Gradient

When we want to learn Q function using TD method, we have to regress the value on the best
action given by Q(s,a), y = ri +maxa Q̂(si+1,a). The argmax problem a∗ = argmax Q(s,a)
during gradient update, particular in continuous action space.

We can use GAN similar method to build a actor as generator to generate action, and
make Q function as discriminator to ensure the action is the best action. The Q-learning is
modified to the Algorithm 8.

Algorithm 8 Q-learning algorithm with actor-critic

1: We initialize Q = Q̂, π = π̂

2: Sample (st , at , rt , st+1) based on π (epsilon greedy trick)
3: Store (st , at , rt , st+1) to buffer
4: Sample (si, ai, ri, si+1) from buffer (replay trick)
5: y = ri+ maxa Q̂(si+1,a) Q̂(si+1, π̂(si+1))

6: update Q to make Q(si,ai) close to y (target network trick)
7: update π to maximize Q(si,π(si))

8: every C steps reset Q̂ = Q, π̂ = π

4.4 Sparse Reward

If we want to complete a task that is very far from the current state, the reward is sparse.
For example, if we want to have a good job, we have to learn some skills and take the right
actions. The problem is that sometimes learning one skill or take a action could be assigned
with a small positive reward, leading a large negative reward in the final goal (get a good
job). The question is how to get the right reward for these actions that are far from the final
objectives.

4.4.1 Reward Shaping

One solution is reward shaping, we manually design some reward function assigning reward
to all the possible action that we could take. For example, if we take “study” action, we will
be not happy (reward is negative), but it can lead to high positive reward in the future. So we
need to shape the reward of taking “study" action to be positive. There are many research
works on reward shaping.

Curiosity We can add a curiosity rewards to each action, R(τ) = ∑
T
t rt + ri

t where ri
t

is curiosity reward in the t step. For example, ri
t = diff(ŝt+1,st+1) where ŝt+1 = f (at ,st),

showing that we use the network f to predict the next state ŝt+1, and the curiosity reward is
the difference between the predicted ŝt+1 and the st+1 in our current policy π . If the difference
is high that means next state is hard to predict (the future is hard to determine), the reward is

19

high that encourages curiosity. However, the problem is that if we make high rewards to the
uncertainty, we will ignore the important features. So instead of the states, we can predict
the features of the state, and ri

t = diff(φ(ŝt+1),φ(st+1)) where φ could be a small network
(linear or non-linear transformation) that takes states and output the features of the states.
How to learn the φ function, we can use another network that takes φ(st) and φ(st+1) and
outputs ât , ensuring ât and at is as close as possible. Because st takes action at to reach st+1,
and if the φst and φst+1 can be used to recover at , we can say φ function outputs the main
features of the states.

Curriculum Learning The basic idea of curriculum learning is that we first train model
on the simple cases and then the model will be trained on harder cases. The question is how
to identify which cases are simple or hard. For example, we can use reverse curriculum
generation. Starts from the goal state, we sample several states around the goal states and
pick the top-k nearest states, and then we generate another set of several states around the
top-k nearest states, and so on. In the end, we can get the orders of the learning cases from
simplest to hardest.

Hierarchical RL We can divide the task to several small task and for each task, we apply
RL methods.

4.5 No Rewards (Imitation Learning)

Imitation learning is to teach model behavor according to the examples, though we do not
have rewards.

4.5.1 Behavior Cloning

We can collect a lots of (s,a) and train a model π(s) that takes s and outputs correct a. The
problems are that the observation is limited, and that we cannot have global optimization.
Noted that in RL, the rewards are the expectation of the whole trajectory. One more problem
is that the model will not learn the main features that leads the correct actions.

4.5.2 Inverse Reinforcement Learning

Rewards can be learnt from the correct (s,a), The idea is really simple, we can learn the
reward function from the expert trajectory τ , and use the reward function to predict trajectory
τ̄ . The objective is the rewards of the expert trajectory is always larger then the rewards of
the predicted trajectory, i.e., ∑

N
n=1 R(τn)> ∑

N
n=1 R(τ̄n).

20

5 Deep Learning

5.1 Forward and Backward Pass

A Neural Network is regarded as a computational graph, where each node is a parameter
node or a intermediate node. If the nodes are the same, they will be depicted independently
but share the same parameters. In forward pass, we can compute the parts of gradient of
current node. In backward pass, we can collect the gradient from the terminal node (loss
node) and sum up the gradients from the nodes that are independent but share the same
parameters.

5.2 Basic Units

• Convolutional Neural Network (CNN) takes the high dimension tensors and outputs
the low dimension tensors by representing one neutron with its neighbours.

• Recurrent Neural Network (RNN) takes a arbitrary-length sequence of tokens and
outputs a hidden representation for each token. The vanilla Long Short-Term Memory
(LSTM) transforms the current input xi and previous hidden representation xi−1 to an
new input zi, an input gates ii, a forget gates fi and a output gate oi. The new memory
is obtained by the previous memory with a forget gate plus the new input with an
input gate: ci = ci−1� fi + zi� ii. The new hidden representation is obtained by the
new memory with a output gate: hi = oi� ci. Compared to LSTM, the vanilla Gated
Recurrent Unit (GRU) uses less gates by combining the input gate and the output
gate into an update gate gi but renames the forget gate as a reset gate ri. The new
input zi is obtained by the current input and the previous hidden representation with
the reset gate: zi = f (xi,hi−1� ri). The new hidden representation hi is obtained by
the interpolation between the new input and previous hidden representation with the
update gate: hi = gi�hi−1 +(1−gi)� zi.

• Spatial Transformer adopts the matrix to transform the input tensor by indices. For
example, the value in (1,2) is transformed to (2,3). The (2,3) is obtained by a linear
function that could be a neural network. Sometimes the output is a float not an integer,
so we use the interpolation to train the model.

• Highway Network simplified from GRU by removing the time step input xi and reset
gate ri. Different from GRU that encodes time-step tokens, Highway network aims to
encode the single input with more layers. Because highway networks have no input in
each time step, the update gate gi and the new input zi for each layer are obtained by
the hidden representation hi−1 in the previous layer. The new hidden representation
hi = gi�hi−1 +(1−gi)� zi, which is the same to GRU.

21

• Residual Network is the another version of highway network. Differently, it does not
use the controlled gate and uses multiple layers to obtain the new input zi. hi = hi−1+zi

where zi = f (... f (hi−1)..).

• Grid LSTM is similar to the vanilla LSTM. The vanilla LSTM take (ci,hi) and
outputs (ci+1,hi+1). The grid LSTM takes (ci,hi,a j,b j) and outputs (ci,hi,a j+1,b j+1).
The simple modification is that we just concatenate ci and a j and concatenate hi

and b j. The original LSTM take ([ci;a j], [hi;b j]) and outputs ([ci+1;a j+1], [hi+1;b j+1]).
Furthermore, we can do 3-D or 4-D LSTM by the simple concatenation.

• Recursive Neural Network is more general to recurrent neural network. Encoding
a sequence of tokens in RNN can be regarded as encoding a tree with left branching.
Recursive Neural Network encode the tree in bottom-up manner, usually in binarized
trees. The problem is how to merge two nodes into the single node. For example,
Recursive Neural Tensor network take two nodes with self-transformation first and
then do non-linear merging. Matrix-vector Recursive Network split the each node into
two part: one vector and one matrix.

• Tree LSTM

• Attention. In conditional generation, bad attention leads to over-generation (solved
by regularization?)

• Memory Network is originally used in document comprehension QA task. Documents
are represented as vectors. Given a query vector, we extract relevant information
from the document vectors to answer the questions. The extraction can be a loop,
where extracted information can be concatenated to the query and then further extract
information (hopping).

• Neural Turing Machine is similar to memory network, but it not only extracts the
information from the memory, but also it can modify the memory. In details, for each
query, they will output keys k, gates e and to-be-written a. They use k to compute
the attention α for each part of memory and then use the attention to identify how
many thing should be modified for each part. The memory will be modified: mi =

mi−αi(e�m+a)

• Pointer Network

22

5.3 Activate Function

5.3.1 Tanh

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

−2 2

x

y

5.3.2 Sigmoid

−6 −4 −2 2 4 6

−1

−0.5

0.5

1

−2 2

x

y

5.3.3 ReLU

1) fast to compute; 2) biology reason; 3) infinite sigmoid with different bias; 4) resolve
gradient vanishing problem

23

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

x

y

5.3.4 Parametric ReLU

y = αx if y < 0. It is reduced to leaky ReLU if α = 0.01. It is Randomized ReLU if the α is
sampled from the distribution during training.

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

y

5.3.5 Exponential Linear Unit (ELU)

y = α(ex−1) if y < 0

−6 −4 −2

−1

1

−2

x

y

24

5.3.6 Scaled Exponential Linear Unit (SELU)

y = λα(ex− 1) if y < 0, y = λx, where λ = 1.0507009873... and α = 1.6732632.... The
numbers can be proved in the original paper. The idea is that the input value x∼ (µ = 0,σ2 =

1), and the output value y∼ (µ = 0,σ2 = 1) if y = SELU(x).

−6 −4 −2

−1

1

−2

x

y

5.3.7 Swish

y = x∗ sigmoid(x)

−6 −4 −2

−2

−1

1

2

−2

x

y

6 Machine Learning

MLE vs CE Maximum Likelihood equals to Minimize Cross Entropy 6

The mismatch between training and test in language generation In training, we always
have a reference, but in test, we generate the token conditioning on the predicted token in
the previous step. RL and schedule modeling can help. RL uses loss for the whole sentence
instead of the single token. Schedule modeling adopt sampling or beam search method to
choose if we use the reference to train or the predicted token in the previous step to train.

6https://zhuanlan.zhihu.com/p/51099880

25

https://zhuanlan.zhihu.com/p/51099880

Batch Normalization (feature scaling) In deep learning, each dimension of a vector
represent a feature by real number. Some dimensions have high value while some have low
value. For the high-value dimension, the parameters are low-value, while the parameters are
high-value if the value of the dimension is low. If we use a high learning rate, the training will
be hard for the high-value parameters. A method is using a small learning rate, but it leads to
slow training. Batch normalization is commonly used in batch-based training. The basic idea
is to rescale the value of each dimension by means and variance. xi

j is a scalar for the vector

xi, ith examples in a batch during training. µ j =
1
N ∑

N
i xi

j and σ j =
√

1
N ∑

N
i (x

i
j−µ j)2.

x̃i = BatchNormalization(xi,µ,σ)

= xi−µ

σ

(41)

The benefit is avoiding covariant shift, and less exploding or vanishing gradients. For test, we
don’t have batch input. There are two options to get means and variance. 1) we can compute
the means and variance for the whole training data with the final model. 2) we can collect all
the means and variance during the entire training.

7 Meta-Learning

The meta-learning is method of learning how to learn in machine learning. Machine learning
algorithms build a model based on sample data, known as “training data", in order to make
predictions or decisions. But we have to manually design the model architectures, initialized
parameters, evaluation metrics and so on. Meta-learning aims to automatically find these
suitable settings, which should be manually set up in machine learning.

The basic idea is that given a set of (similar) tasks, we should automatically learn the
machine learning settings that are good for all these tasks or other related tasks. General
setting of the meta-learning is that, in training set, we have train data (support) and test
data (query), in test set, we also have train data and test data. Meta-learning is task-level,
and machine learning is model-level. In deep learning, meta-learning will have two sets of
parameters, φ is a parameter of the neural network predicting the setting of the models with
parameter θ .

Meta-learning is strongly related to few-shot learning, that each task has several training
data. For example, 10-ways 5-shot classification is that we have 10 classes, and each class
has 5 training examples.

7.1 Model-Agnostic Meta-Learning (MAML)

The purpose of MAML is to find the optimal initial parameters. MAML has a strong
constraint that the two models have the same architecture.

The process of MAML: we use φ to initialize θ for each task, and in that task, we do the
standard back-propagation training to get optimal θ̂ , and collect all loss on the test data for

26

each task to be the loss on φ , L(φ) = ∑
n
i=1 li(θ̂ i), li(θ̂ i) is the model loss with θ̂ n on the ith

task. Noted that sometimes, θ̂ is obtained by φ with the one-step training. The motivation
is that our purpose is to obtain the good initialized parameter φ that can be optimized in
specific task within just one-step training.

How to get the gradient of φ from the tasks?

∇φ L(φ) = ∇φ ∑
n
i=1 li(θ̂ i)

= ∑
n
i=1 ∇φ li(θ̂ i)

(42)

Take one task as an example.

∇φ l(θ̂) =



∂ l(θ̂)/∂φ1

∂ l(θ̂)/∂φ2
...

∂ l(θ̂)/∂φi
...


(43)

Take one item as an example.

∂ l(θ̂)/∂φi = ∑
j

∂ l(θ̂)
∂ θ̂ j

∂ θ̂ j

∂φi
(44)

where θ̂ j = φ j− ε
∂ l(φ j)

∂φ j
, because we use the initialized parameter φ to do one-step training

that obtain θ̂ . If i 6= j,
∂ θ̂ j

∂φi
= 0− ε

∂ l(φ j)

∂φ j∂φi
≈ 0 (45)

else (i = j),
∂ θ̂ j

∂φi
= 1− ε

∂ l(φ j)

∂φ j∂φi
≈ 1 (46)

So 44 can be rewritten as

∂ l(θ̂)/∂φi = ∑
j

∂ l(θ̂)
∂ θ̂ j

∂ θ̂ j

∂φi
≈ ∂ l(θ̂)

∂ θ̂i
(47)

The gradient of φ is further step in test dataset. The real implementation is shown in Algorithm
9.

Algorithm 9 the train on MAML
1: sample a task i.
2: θ i = φt−1− ε∇φ li(φt−1)

3: φt = φt−1−η∇θ i li(θ i)

27

7.2 Reptile

Similar to MAML, Reptile is designed to find the optimal initialized parameters. Different
from MAML, Reptile uses the average gradients of each training on the supprot data.
Compared to MAML and pre-trained model. For example, on the ith task, we will get
φ → g1 → g2. The MAML use gradient of g2 to update the φ , Reptile uses gradient of
g1 +g2 to update the φ , and pre-trained model uses gradient of g1 to update the φ .

7.3 Gradient by LSTM

Meta-learning can automatically learn the update of the parameters. Recall that the model
parameters are updated by their gradient with a learning rate:

θt = θt−1−η∇θ l(θt−1) (48)

The memory update in LSTM is

ct = f � ct−1 + i� zt (49)

where ct is the memory in the tth step, f is the forget gate, i is the input gate, and zt is the new
input. If we make c = theta, f = 1, z =−∇θ l(θ), and i = η , the two equations are equal. We
can use the meta-learning to learn the f and i in the LSTM architecture by back-propagation.
In the real implementation, there is an assumption that parameters are independent, and the
LSTM share to each model parameter.

Because we use the memory to represent the model parameter, i.e., c = θ , the LSTM has
no meory for the input. The variant model is to use another standard LSTM built below to
capture the memory of the inputs. One problem that I do not understand is that the loss
comes from the test set, and is it reasonable?.

Because the LSTM only focus on the one parameter (scalar), so we could use different
architecture in test.

7.4 Metric-based Approach

In few-shot learning, we can directly feed all training data with test data to get the answers
(Siamese Network). My thought: the drawback of few-shot learning is that the training data
for each class is small (e.g., 1-shot), we could change the drawback to the pros. Because
we do not have many training data, we can put all the training data as the part of the input.
In machine learning, we use the large training data with label to learn a function f , and
for new coming data, we can get the label by f (test). In meta-learning, we directly model
f (train, test).

28

8 Life Long Learning

One model for all tasks. The challenge is that how to make the model perform well on the
new task (transfer learning) without loss the performance on previous learned task (multi-task
learning).

8.1 Elastic Weight Consolidation (EWC)

The learning is taken iteratively on each task. The new task loss function is

L′(θ) = L(θ)+λ ∑
i

bi(θi−θ
b
i)

2 (50)

where the second term looks like the regularization

9 Linguistics-Compositionality

Proponents of compositionality typically emphasize the productivity and systematicity of
our linguistic understanding. Compositionality is supposed to feature in the best explanation
of these phenomena that if we understand some complex expressions we tend to understand
others that can be obtained by recombining their constituents. Opponents of compositionality
typically point to cases when meanings of larger expressions seem to depend on the intentions
of the speaker, on the linguistic environment, or on the setting in which the utterance
takes place without their parts displaying a similar dependence. They try to respond to the
arguments from productivity and systematicity by insisting that the phenomena are limited,
and by suggesting alternative explanations. (need more explanation) 7

9.1 Definition

(C) The meaning of a complex expression is determined by its structure and the mean-
ings of its constituents. For particular languages, (C’) For every complex expression e in
L, the meaning of e in L is determined by the structure of e in L and the meanings of
the constituents of e in L. Compositionality entails (although on many elaborations is not
entailed by) the claim that syntax plus lexical semantics determines the entire semantics
for L.

Q1: whether there are such things as meaningful constituents? Q2: whether the meaning-
ful constituents are independent? If the first question is positive, the answer to the second
question is that constituents contribute different things to different thoughts, but these variable
contributions, plus the way the constituents are combined, fully determine the meaning.

(Cre f) For every complex expression e in L, the reference of e in L is determined by
the structure of e in L and the references of the constituents of e in L. The reference is
not identical to the meaning (need more explanation). It is trivial that we can compositionally

7https://plato.stanford.edu/entries/compositionality/

29

assign something to each expression of a language (for example, if expressions serve as
their own meanings, semantics is certainly compositional!) but it does not follow that it is
trivial to adequately assign meanings to them. Zadrozny (1994) gives a method. Given a set
S of strings generated from an arbitrary alphabet via concatenation and a meaning function
m which assigns the members of an arbitrary set M (meaning) to the members of S, we
can construct a new meaning function µ such that for all s, t ∈ S, µ(s.t) = µ(s)(µ(t)) and
µ(s)(s) = m(s). m(s) returns the meaning of s. . is a binary operation (e.g., concatenation).
What this shows is that we can turn an arbitrary meaning function into a compositional
one, as long as we replace the old meanings with new ‘Ă‘IJmeanings‘Ă‘İ from which they
are uniformly recoverable. What is not clear is whether these new “meanings" really are
meanings

(Clocal) For every complex expression e in L, the meaning of e in L is determined by
the immediate structure of e in L and the meanings of the immediate constituents of e
in L.

(Ccoll) For every complex expression e in L, the meaning of e in L is determined by
the structure of e in L and the meanings of the constituents of e in L collectively.

(Ccross) For every complex expression e in L, the meaning of e in L is functionally
determined through a single function for all possible human languages by the structure
of e in L and the meanings of the constituents of e in L.

(Cstand)For every complex expression e in L, the standing meaning of e in L is deter-
mined by the structure of e in L and the standing meanings of the constituents of e in
L.

(Cocc) For every complex expression e in L and every context c, the occasion mean-
ing of e in L at c is determined by the structure of e in L and the occasion meanings of
the constituents of e in L at c.

9.2 Other principles

• If two meaningful expressions differ only in that one is the result of substituting a
synonym for a constituent within the other then the two expressions are synonyms.

• If two meaningful expressions differ only in that one is the result of substituting
some synonyms for some constituents within the other then the two expressions are
synonyms.

• To every syntactic rule corresponds a semantic rule that assigns meanings to the output
of the syntactic rule on the basis of the meanings of its inputs.

• Complex expressions have their meanings in virtue of their structure and the meanings
of their constituents.

• The meaning of an expression is determined by the meanings of all complex expres-
sions in which it occurs as a constituent.

30

• The meaning of an expression is determined by the meaning of any complex expression
in which it occurs as a constituent. This is a very strong thesis and most standard
semantic theories are incompatible with it.

• The meaning of an expression is determined by the meanings of all expressions within
any cofinal set of expressions. A cofinal set of expressions is a set such that any
expression occurs as a constituent in at least one member of the set.

• L is compositional is often taken to mean that the meaning of an arbitrary complex
expression in L is built up from the meanings of its constituents in L.

9.3 Formal Definition

Given a syntactic algebra is a partial algebra E =
〈
E,(Fγ)γ∈Γ

〉
, where E is a set of expressions

and every Fγ is a partial syntactic operation on E, and m is a meaning-assignment function,
m is F-compositional if there is a function G on M:

m(F(e1, ...,ek)) = G(m(e1), ...,m(ek)) (51)

So it can induce the semantic algebra M =
〈
M,(Gγ)γ∈Γ

〉
, and it is a homomorphism between

E and M.

9.4 Arguments For Compositionality

Argument from productivity Since competent speakers can understand a complex expres-
sion e they never encountered before, it must be that they (perhaps tacitly) know something
on the basis of which they can figure out, without any additional information, what e means.
If this is so, something they already know must determine what e means. And this knowledge
cannot plausibly be anything but knowledge of the structure of e and knowledge of the
individual meanings of the simple constituents of e.

Argument from systematicity Anyone who understands a complex expression e and e′

built up through the syntactic operation F from constituents e1, ...,en and e′1, ...,e
′
n, respec-

tively, can also understand any other meaningful complex expression e′′ built up through
F from expressions among e1, ...,en, e′1, ...,e

′
n. So, it must be that anyone who knows what

e and e′ mean is in the position to figure out, without any additional information, what e′′

means. But the only plausible way this could be true is if the meaning of e determines F and
meanings of e1, ...,en, the meaning of e′ determines F and the meanings of e′1, ...,e

′
n, and F

and the meanings of e1, ...,en, e′1, ...,e
′
n determine the meaning of e′′.

Although the arguments from productivity and systematicity are usually alluded to in the
same breath, they are very different considerations. In systematicity, we have a function F. It
makes a valid composition should satisfy the function F .

31

It seems to me that we have no such reason: semanticists have focused on whether they
can hold on to compositionality while providing satisfactory explanations, not on whether
they have to embrace compositionality in order to provide satisfactory explanations.

9.5 Arguments Against Compositionality

Putative counterexamples are always complex expressions whose meaning appears to depend
not only on the meanings of their constituents and on their structure but on some third factor
as well. I don’t think these examples are conterexamples for compositionality. The main
arugment is whether the lexical semantics (simple expressions) have some knowledges.

32

	Sampling
	Direct Sampling (Inverse Sampling)
	Rejection Sampling
	Importance Sampling
	Markov Chain Mento Carlo (MCMC) sampling

	Variational Auto-Encoder (VAE) vs Expectation Maximization (EM)
	Expectation-Maximization Algorithm (EM) for MLE
	Mean-Field Variational Inference for MAP
	VAE

	Generative Adversarial Network for NLP
	Conditional GAN
	Unsupervised Conditional GAN
	Direct Transformation
	Projection to Common Space

	Generalization on GAN
	f-Divergence
	f-GAN

	Alternatives to f-GAN
	Least Square GAN (LSGAN)
	Wasserstein GAN (WGAN)
	Energy-Based GAN (EBGAN)

	Other Variants
	InfoGAN
	VAE-GAN
	BiGAN

	Applications
	Reinforcement Learning (RL) VS GAN in Generative Model
	Maximum Likelihood vs RL

	Reinforcement Learning (RL)
	On-Policy to Off-Policy
	Q-learning
	More magics
	Continuous actions

	Actor-Critic
	Pairwise Derivative Policy Gradient

	Sparse Reward
	Reward Shaping

	No Rewards (Imitation Learning)
	Behavior Cloning
	Inverse Reinforcement Learning

	Deep Learning
	Forward and Backward Pass
	Basic Units
	Activate Function
	Tanh
	Sigmoid
	ReLU
	Parametric ReLU
	Exponential Linear Unit (ELU)
	Scaled Exponential Linear Unit (SELU)
	Swish

	Machine Learning
	Meta-Learning
	Model-Agnostic Meta-Learning (MAML)
	Reptile
	Gradient by LSTM
	Metric-based Approach

	Life Long Learning
	Elastic Weight Consolidation (EWC)

	Linguistics-Compositionality
	Definition
	Other principles
	Formal Definition
	Arguments For Compositionality
	Arguments Against Compositionality

