
Universal Discourse Representation Structure
Parsing

Jiangming Liu
University of Edinburgh
jiangming.liu@ed.ac.uk

Shay B. Cohen
University of Edinburgh
scohen@inf.ed.ac.uk

Mirella Lapata
University of Edinburgh
mlap@inf.ed.ac.uk

Johan Bos
University of Groningen
johan.bos@rug.nl

We consider the task of cross-lingual semantic parsing in the style of Discourse Representa-
tion Theory (DRT) where knowledge from annotated corpora in a resource-rich language is
transferred via bitext to guide learning in other languages. We introduce Universal Discourse
Representation Theory (UDRT), a variant of DRT that explicitly anchors semantic represen-
tations to tokens in the linguistic input. We develop a semantic parsing framework based on
the Transformer architecture and employ it to obtain semantic resources in multiple languages
following two learning schemes. The Many-to-One approach translates non-English text to
English, and then runs a relatively accurate English parser on the translated text, while the One-
to-Many approach translates gold standard English to non-English text and trains multiple
parsers (one per language) on the translations. Experimental results on the Parallel Meaning
Bank show that our proposal outperforms strong baselines by a wide margin and can be used to
construct (silver-standard) meaning banks for 99 languages.

1. Introduction

Recent years have seen a surge of interest in representational frameworks for natu-
ral language semantics. These include novel representation schemes such as Abstract
Meaning Representation (AMR; Banarescu et al. 2013), Universal Conceptual Cogni-
tive Annotation (UCCA; Abend and Rappoport 2013), and Universal Decompositional
Semantics (UDS; White et al. 2016) as well as existing semantic formalisms such as
Minimal Recursion Semantics (MRS; Copestake et al. 2005), and Discourse Represen-
tation Theory (DRT; Kamp and Reyle 1993). The availability of annotated corpora
(Flickinger, Zhang, and Kordoni 2012; May 2016; Hershcovich, Abend, and Rappoport
2017; Abzianidze et al. 2017) has further enabled the development and exploration of
various semantic parsing models aiming to map natural language to formal meaning
representations.

In this work, we focus on parsing meaning representations in the style of DRT
(Kamp 1981; Kamp and Reyle 1993; Asher and Lascarides 2003), a formal semantic
theory designed to handle a variety of linguistic phenomena, including anaphora,
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presuppositions (Van der Sandt 1992; Venhuizen et al. 2018), and temporal expressions
within and across sentences. The basic meaning-carrying units in DRT are Discourse
Representation Structures (DRSs), which are recursive, have a model-theoretic inter-
pretation and can be translated into first-order logic (Kamp and Reyle 1993). DRSs
are scoped meaning representations, they capture the semantics of negation, modals,
quantification, and presupposition triggers.

Although initial attempts at DRT parsing focused on small fragments of English
(Johnson and Klein 1986; Wada and Asher 1986), more recent work has taken ad-
vantage of the availability of syntactic treebanks and robust parsers trained on them
(Hockenmaier and Steedman 2007; Curran, Clark, and Bos 2007; Bos 2015) or corpora
specifically annotated with discourse representation structures upon which DRS parsers
can be developed more directly. Examples of such resources are the Redwoods Tree-
bank (Oepen et al. 2002; Baldridge and Lascarides 2005b,a), the Groningen Meaning
Bank (GMB; Basile et al. 2012; Bos et al. 2017), and the Parallel Meaning Bank (PMB;
Abzianidze et al. 2017) which contains annotations for English, German, Dutch, and
Italian sentences based on a parallel corpus. Aside from larger-scale resources, renewed
interest (Oepen et al. 2020)1 in DRT parsing has been triggered by the realization that
document-level semantic analysis is prerequisite to various applications ranging from
machine translation (Kim, Tran, and Ney 2019) to machine reading (Gangemi et al. 2017;
Chen 2018), and generation (Basile and Bos 2013; Narayan and Gardent 2014).

Figure 1(a) shows the DRS corresponding to an example sentence taken from the
PMB, and its Italian translation. Conventionally, DRSs are depicted as boxes. Each box
comes with a unique label (see b1, b2, b3 in the figure) and has two layers. The top layer
contains discourse referents (e.g., x1, t1), while the bottom layer contains conditions
over discourse referents. Each referent or condition belongs to a unique box label,
showing the referent or the condition which is interpreted in that box (e.g., b2 : x1 and
b2 : person.n.01(x1)). The predicates are disambiguated with senses (e.g., n.01 and v.01)
provided in WordNet (Fellbaum 1998). More details on the DRT formalism are discussed
in Section 2.1.

Despite efforts to create cross-lingual DRS annotations (Abzianidze et al. 2017), the
amount of gold-standard data for languages other than English is limited to a few
hundred sentences that are useful for evaluation but small-scale for model training.
In addition, for many languages, semantic analysis cannot be performed at all due to
the lack of annotated data. The creation of such data remains an expensive endeavor
requiring expert knowledge, i.e., familiarity with the semantic formalism and language
at hand. Since it is unrealistic to expect that semantic resources will be developed for
many low-resource languages in the near future, previous work has resorted to machine
translation and bitexts that are more readily available (Evang and Bos 2016; Damonte
and Cohen 2018; Zhang et al. 2018; Conneau et al. 2018; Fancellu et al. 2020). Cross-
lingual semantic parsing leverages an existing parser in a source language (e.g., English)
together with a machine translation system to learn a semantic parser for a target
language (e.g., Italian or Chinese).

In this paper, we also aim to develop a cross-lingual DRT parser for languages
where no gold-standard training data is available. We first propose a variant of the DRT
formalism, which explicitly anchors semantic representations to words. Specifically,
we introduce Universal Discourse Representation Structures (UDRSs) where language-

1 Details on the IWCS 2019 shared task on Discourse Representation Structure parsing can be found at
https://sites.google.com/view/iwcs2019/home.
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English: everyone was killed .
Italian: sono stati uccisi tutti .

they were killed all .

b1

b1 : b2 : x1 b2
b2 : person.n.01(x1)

→ b3 : e1, b4 : t1 b3
b4 : time.n.08(t1)
b4 : t1 < now
b3 : kill.v.01(e1)
b3 : Time(e1, t1)
b3 : Patient(e1, x1)

(a)

b1

b1 : b2 : x1 b2
b2 : $0.n(x1)

→ b3 : e1, b4 ← t1 b3
b4 : time.n(t1)
b4 : t1 < now
b3 : $2.v(e1)
b3 : Time(e1, t1)
b3 : Patient(e1, x1)

(b)

b1

b1 : b2 : x1 b2
b2 : $3.n(x1)

→ b3 : e1, b4 ← t1 b3
b4 : time.n(t1)
b4 : t1 < now
b3 : $2.v(e1)
b3 : Time(e1, t1)
b3 : Patient(e1, x1)

(c)

Figure 1: (a) DRS for English sentence everyone was killed and its Italian translation
sono stati uccisi tutti, taken from the Parallel Meaning Bank; (b) UDRS for English and
(c) Italian sentence. The two UDRSs differ in how they are anchored to the English
and Italian sentences (via alignment). Anchors $0 and $2 in (b) refer to English tokens
everyone and killed, respectively, while anchors $3 and $2 in (c) refer to Italian tokens
tutti and uccisi.

dependent symbols are replaced with anchors referring to tokens (or characters, e.g., in
the case of Chinese) of the input sentence. UDRSs are intended as an alternative
representation which abstracts away from decisions regarding concepts in the source
language. As shown in Figure 1(b) and Figure 1(c), “person” and “kill” are replaced
with anchors $0 and $2, corresponding to English tokens everyone and killed, and $3
and $2, corresponding to Italian tokens tutti and uccisi. Also, notice that UDRSs omit in-
formation about word senses (denoted by WordNet synsets, e.g., person.n.01, time.n.08
in Figure 1(a)) as the latter cannot be assumed to be the same across languages (see
Section 2.2 for further discussion).

Like other related broad-coverage semantic representations (e.g., AMR), DRSs are
not directly anchored in the sentences whose meaning they purport to represent. The
lack of an explicit linking between sentence tokens and semantic structures makes DRSs
less usable for downstream processing tasks and less suitable for cross-lingual parsing
that relies on semantic and structural equivalences between languages. UDRSs omit
lexical details pertaining to the input sentence and as such are able to capture similarities
in the representation of expressions within the same language and across languages.

Our cross-lingual parser takes advantage of UDRSs and state-of-the-art machine
translation to develop semantic resources in multiple languages following two learning
schemes. The Many-to-One approach works by translating non-English text to English,
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and then running a relatively accurate English DRS parser on the translated text, while
the One-to-Many approach translates gold-standard English (training data) to non-
English text and trains multiple parsers (one per language) on the translations.2 In this
paper, we propose (1) UDRSs to explicitly anchor DRSs to lexical tokens, which we
argue is advantageous for both monolingual and cross-lingual parsing; (2) a box-to-tree
conversion algorithm which is lossless and reversible; and (3) a general cross-lingual
semantic parsing framework based on the Transformer architecture and its evaluation
on the PMB following the one-to-many and many-to-one learning paradigms. We show-
case the scalability of the approach by creating a large corpus with (silver-standard)
discourse representation annotations in 99 languages.

2. Discourse Representation Structures

We first describe the basics of traditional DRSs, and then explain how to obtain
UDRSs based on them. We also highlight the advantages of UDRSs when they are used
for multilingual semantic representations.

2.1 Traditional DRSs

Discourse Representation Structures (DRSs), the basic meaning-carrying units of Dis-
course Representation Theory (DRT), are typically visualized as one or more boxes,
which can be nested to represent the semantics of sentences recursively. An example
is given in Figure 1(a). Each box has a label (e.g., b1) and consists of two layers. The top
layer contains variables (e.g., x1), while the bottom layer contains conditions over the
variables. For example, person.n.01(x1) means that variable x1 is applied to predicate
person.n.01, which in fact is a WordNet synset.

The PMB adopts an extension of DRT which treats presupposition3 with projection
pointers (Venhuizen, Bos, and Brouwer 2013), marking how the accommodation site
(box) variables and conditions are bounded and interpreted. For example, b2 : x1 and
b1 : time.n.08(t1) indicate that variable x1 and condition time.n.08(t1) should be inter-
preted within boxes b2 and b1, respectively. The boxes are constructed incrementally by a
set of rules mapping syntactic structures to variables and conditions (Kamp and Reyle
1993). As shown in Figure 1(a), the phrase was killed gives rise to temporal variable t1
and condition time.n.08(t1) and t1 < now; these temporal markers are located in box b3
together with the predicate “kill”, and are bound by outer box b4 (not drawn in the
figure) which would be created to accommodate any discourse that might continue the
current sentence.

2.2 Universal DRSs

How can DRSs be used to represent meaning across languages? An obvious idea
would be to assume that English and non-English languages share identical meaning

2 We use the term many-to-one to emphasize the fact that a semantic parser is trained only once (e.g., in
English). In the one-to-many setting, multiple semantic parsers are trained, one per target language. The
terms are equivalent to “translate test” (many-to-one) and “translate train” (one-to-many) used in
previous work (Conneau et al. 2018).

3 Presupposition is the phenomenon whereby speakers mark linguistically the information that is
presupposed or taken for granted rather than being part of the main propositional content of an utterance
(Beaver and Guerts 2014). Expressions and constructions carrying presuppositions are called
“presupposition triggers”, forming a large class including definites and factive verbs.
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b1 : x1, b2 : x2,
b2 : e1, b2 : t1 b2

b1 : male.n.02(x1)
b1 : Name(x1, tom)
b2 : time.n.08(t1)
b2 : t1 = now
b2 : eat.v.01(e1)
b2 : Time(e1, t1)
b2 : Theme(e1, x2)
b2 : Agent(e1, x1)
b2 : apple.n.01(x2)

(a)

b1 : x1, b2 : x2,
b2 : e1, b2 : t1 b2

b1 : male.n.02(x1)
b1 : Name(x1, jack)
b2 : time.n.08(t1)
b2 : t1 = now
b2 : clean.v.01(e1)
b2 : Time(e1, t1)
b2 : Theme(e1, x2)
b2 : Agent(e1, x1)
b2 : car.n.01(x2)

(b)

b1 : x1, b2 : x2,
b2 : e1, b2 : t1 b2

b1 : male.n(x1)
b1 : Name(x1, $0)
b2 : time.n(t1)
b2 : t1 = now
b2 : $2.v(e1)
b2 : Time(e1, t1)
b2 : Theme(e1, x2)
b2 : Agent(e1, x1)
b2 : $4.n(x2)

(c)

b1 : x1, b2 : x2,
b2 : e1, b2 : t1 b2

b1 : male.n(x1)
b1 : Name(x1, $0[汤汤汤姆姆姆])
b2 : time.n(t1)
b2 : t1 = now

b2 : $2[吃吃吃].v(e1)
b2 : Time(e1, t1)
b2 : Theme(e1, x2)
b2 : Agent(e1, x1)
b2 : $4[苹苹苹果果果].n(x2)

(d)

Figure 2: (a) DRS for sentence Tom is eating an apple ; (b) DRS for sentence Jack is
cleaning a car ; (c) UDRS for both sentences; (d) UDRS for sentence 汤姆 正在 吃 一
个 苹果 (Tom is eating an apple) constructed via (c) by substituting indices with their
corresponding words. Expressions in brackets make the anchoring explicit (e.g., $4 is
anchored to Chinese characters 苹果) and are only shown for ease of understanding,
they are not the part of the UDRS.

representations and sense distinctions (aka identical DRSs). For example, the English
sentence everyone was killed and the Italian sentence sono stati uccisi tutti would be
represented by the same DRS, shown in Figure 1(a). Unfortunately, this assumption is
unrealistic, as sense distinctions can vary widely across languages.4 For instance, the
verb eat/essen has six senses according to the English WordNet (Fellbaum 1998) but
only one in GermaNet (Hamp and Feldweg 1997), and the word good/好 has 23 senses
in the English WordNet but 17 senses in the Chinese WordNet (Huang et al. 2010). In
other words, we cannot assume that there will be a one-to-one correspondence in the
senses of the same predicate in any two languages

Since word sense disambiguation is language-specific, we do not consider it part
of the proposed cross-lingual meaning representation but assume that DRS opera-
tors (e.g., negation) and semantic roles are consistent across languages. We introduce
Universal Discourse Representation Structures (UDRSs) which replace “DRS tokens”
such as constants and predicates of conditions, with alignments to tokens or spans
(e.g., named entities) in the input sentence. An example is shown in Figure 2(b), where
condition b2 : eat.v.01(e1) is generalized to b2 : $2.v(e1). Here, $2 corresponds to eating
and v denotes the predicates part of speech (i.e., verb). Note that even though senses are
not part of the UDRS representation, parts of speech (for predicates) are since they can
provide cues for sense disambiguation across languages.

UDRS representations abstract semantic structures within the same language and
across languages. Monolingually, they are generalizations of sentences with different
semantic content but similar syntax. As shown in Figure 2, Tom is eating an apple
and Jack is washing a car are represented by the same UDRS which can be viewed
as a template describing an event in past tense with an agent and a theme. UDRSs are
more compact representations and advantageous from a modeling perspective; they are
easier to generate compared to DRSs since multiple training instances are represented
by the same semantic structure. Moreover, UDRSs can be used to capture basic meaning

4 http://globalwordnet.org/about-gwa/
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across languages. The UDRS in Figure 2(c) can be used to recover the semantics of the
sentence “汤姆 正在 吃 一个 苹果” (Tom is eating an apple) by substituting index $0
with汤姆, index $2 with吃, and index $4 with苹果 (see Figure 2(d)).

Link to Knowledge Bases. An important distinction between UDRSs and DRSs is that
the former do not represent word senses. We view word sense disambiguation as a
post-processing step which can enrich UDRSs with more fine-grained semantic infor-
mation according to specific tasks and knowledge resources. UDRSs are agnostic when
it comes to sense distinctions. They are compatible with WordNet that exists in multiple
languages5, and has been used for English DRSs, but also related to resources such
as BabelNet (Navigli and Ponzetto 2010), ConceptNet (Speer, Chin, and Havasi 2017),
HowNet (Dong, Dong, and Hao 2006), and Wikidata.6 An example of how UDRSs can
be combined with word senses to provide more detailed meaning representations is
shown in Figure 3.

Link to Language Models. As explained earlier, predicates and constants in UDRSs are
anchored (via alignments) to lexical tokens (see 吃.v(e1) in Figure 2 (d)). As a result,
UDRSs represent multiword expressions as a combination of multiple tokens aiming
to assign atomic meanings and avoid redundant lexical semantics. For example, in
the sentence Tom picked the graphic card up, graphic card corresponds to entity $3–
$4.n(x2) and picked up to relation $1–$5.v(x1, x2). The link between elements of the
semantic representation and words in sentences is advantageous since it renders UDRSs
amenable to further linguistic processing. For example, they could be interfaced with
large-scale pretrained models such as BERT (Devlin et al. 2019) and GPT (Radford
et al. 2019), thereby fusing together deep contextual representations and rich semantic
symbols (see Figure 3). Aside from enriching pretrained models (Wu and He 2019;
Hardalov, Koychev, and Nakov 2020; Kuncoro et al. 2020), such representations could
further motivate future research on their interpretability (Wu and He 2019; Hardalov,
Koychev, and Nakov 2020; Kuncoro et al. 2020; Hewitt and Manning 2019; Kulmizev
et al. 2020).

3. Computational Formats

DRSs are displayed in a box-like format that is intuitive and easy to read but not partic-
ularly convenient for modeling purposes. As a result, DRSs are often post-processed in
a format that can be straightforwardly handled by modern neural network models (Liu,
Cohen, and Lapata 2018; van Noord et al. 2018b; Liu, Cohen, and Lapata 2019a). In this
section, we provide an overview of existing computational formats, prior to describing
our own proposed format.

3.1 Clause Format

In the Parallel Meaning Bank (Abzianidze et al. 2017), DRS variables and conditions
are converted to clauses. Specifically, variables in the top box layer are converted to
clauses by introducing a special condition called “REF”. Figure 4(b) presents the clause
format of the DRS in Figure 4(a); here, “b2 REF x1” indicates that variable x1 is bound

5 http://globalwordnet.org/resources/wordnets-in-the-world/
6 https://www.wikidata.org/wiki/Wikidata:Main_Page
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b1 : x1, b2 : x2, b2 : e2, b2 : t1 b2

b1 : male.n(x1)

b1 : Name(x1, $0[汤汤汤姆姆姆/Tom])

b2 :time.n(t1)

b2 : t1 = now

b2 : $2[吃吃吃/eating].v(e1)

b2 : Time(e1, t1)

b2 : Theme(e1, x2)

b2 : Agent(e1, x1)

b2 : $4[苹苹苹果果果/apple].n(x2)

BERT/GPT

汤姆/Tom 正在/is 吃/eating 一个/an 苹果/apple

English WordNet

Chinese WordNet/HowNet

Other knowledge databases,
e.g., ConceptNet

Figure 3: Illustration of how UDRSs can enrich deep contextual word representations;
word senses can be disambiguated as a post-processing step according to the definitions
of various language-specific resources.

in box b2. Analogously, clause “b3 kill v.01 e1” corresponds to condition kill.v.01(e1)
which is bound in box b3 and b4 TRP t1 “now” is bound in box b4 (TRP corresponds to
temporal).7 The mapping from boxes to clauses is not reversible; in other words, it is
not straightforward to recover the original box from the clause format and restore the
syntactic structure of the original sentence. For instance, the clause format discloses that
temporal information is bound to box b4, but not which box this information is located in
(i.e., b3 in Figure 4(a)). Although PMB is released with clause annotations, Algorithm 1
re-implements the conversion procedure of Abzianidze et al. (2017) to allow for a more
direct comparison between clauses and the tree format introduced below.

In Algorithm 1, the function GETVARIABLEBOUND returns pairs of variables and
box labels (indicating where these are bound) by enumerating all nested boxes.8 The
element P [v] represents the label of the box bounding variable v. Basic conditions

7 For the full list of DRS clauses see https://pmb.let.rug.nl/drs.php.
8 Each variable has exactly one bounding box.
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b1

b1 : b2 : x1 b2
b2 : person.n.01(x1)

→ b3 : e1, b4 : t1 b3
b4 : time.n.08(t1)
b4 : t1 < now
b3 : kill.v.01(e1)
b3 : Time(e1, t1)
b3 : Patient(e1, x1)

(a)

b1 IMP b2 b3
b2 REF x1

b2 person “n.01” x1

b4 REF t1
b4 time “n.08” t1
b4 TPR t1 “now”
b3 REF e1
b3 kill “v.01” e1
b3 Time e1 t1
b3 Patient e1 x1

(b)

b1

→

b3

Patient

b3 e1 x1

Time

b3 e1 t1

Pred

b3 e1 kill v.01

Ref

b3 e1

TPR

b4 t1 now

Pred

b4 t1 time n.08

Ref

b4 t1

b2

Pred

b2 x1 person n.01

Ref

b2 x1

b1

(c)

Figure 4: DRS in box format; (b) DRS in clause format (c) DRS in tree format proposed
in this paper.

Algorithm 1 Box to Clause
Input: B, DRS in box format

Output: C, DRS in clause format
1: P = GETVARIABLEBOUND(B); V ← ∅; C ← ∅
2: procedure TRAVERSAL(b)
3: for cond in b.conds do . each condition
4: for v in cond.args do . each argument
5: if v not in V then
6: C = C ∪ {(P [v] REF v)}; V = V ∪ {v}
7: end if
8: end for
9: if cond is basic then

10: C = C ∪ {(cond.bound cond.name cond.args)}
11: else if cond is unary complex then
12: C = C ∪ {(cond.bound cond.name cond.B)}
13: TRAVERSAL(cond.B)
14: else if cond is binary complex then
15: C = C ∪ {(cond.bound cond.name cond.B1 cond.B2)}
16: TRAVERSAL(cond.B1); TRAVERSAL(cond.B2)
17: end if
18: end for
19: end procedure

are converted to a clause in lines 9–10, where cond.args is a list of the arguments of
the condition (e.g., predicates and referents). Unary complex conditions (i.e., negation,
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Algorithm 2 Box to Tree
Input: B, DRS in box format

Output: T, DRS in tree format
1: P = GETVARIABLEBOUND(B); V ← ∅; T = TRAVERSE(B)
2: procedure TRAVERSE(b)
3: t = TREE(b.name, [])
4: for cond in b.conds do . each condition
5: for v in cond.args do . each argument
6: if v not in V then
7: c = TREE(REF, [P [v], v]); ADDCHILD(t, c); V = V ∪ {v}
8: end if
9: end for

10: if cond is basic then
11: c = TREE(cond.name, cond.bound, cond.args)
12: else if cond is unary complex then
13: c = TREE(cond.name, [])
14: ADDCHILD(c, TREE(cond.bound, []))
15: ADDCHILD(c, TRAVERSE(c.B))
16: else if cond is binary complex then
17: c = TREE(cond.name, [])
18: ADDCHILD(c, TREE(cond.bound, []))
19: ADDCHILD(c, TRAVERSE(c.B1))
20: ADDCHILD(c, TRAVERSE(c.B2))
21: end if
22: ADDCHILD(t, c)
23: end for
24: end procedure

possibility, and necessity) are converted to clauses in lines 11–13, while lines 14–16
show how to convert binary complex conditions (i.e., implication, disjunction, and
duplication) to clauses.9 An example is shown in Figure 4(b).

3.2 Tree Format

Liu, Cohen, and Lapata (2018) propose an algorithm that converts DRS boxes to trees,
where each DRS box is converted to a subtree and conditions within the box are
introduced as children of the subtree. In follow-on work, Liu, Cohen, and Lapata (2019a)
define Discourse Representation Tree Structure (DRTS) based on this conversion. Prob-
lematically, the algorithm of Liu, Cohen, and Lapata (2018) simplifies the semantic
representation as it does not handle presuppositions, word categories (e.g., n for noun),
and senses (e.g., n.01). In this paper, we propose an improved box-to-tree conversion
algorithm, which is reversible and lossless, i.e., it preserves all the information present
in the DRS box, as well as the syntactic structure of the original text. Our conversion
procedure is described in Algorithm 2. Similar to the box-to-clause algorithm, basic con-
ditions are converted to a tree in lines 10–11, where cond.args is a list of the arguments of
the condition (e.g., predicates and referents). Unary complex conditions (i.e., negation,
possibility, and necessity) are converted to subtrees in lines 12–15, while lines 16–20
show how to convert binary complex conditions (i.e., implication, disjunction, and
duplication) to subtrees.

9 We refer to Bos et al. (2017) for more details on basic and complex conditions in DRS boxes.
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b2 : person.n.01(x1) =⇒
Pred

b2 x1 person n.01

(a)

b1

b1 :

=⇒
b2 → b3

b1

→

b1 b2 b3

(b)

Figure 5: Example of converting a basic condition (a) and a binary complex condition
(b) t0 a tree.

An example is shown in Figure 4(c). Basic condition b2 : person.n.01(x1) is con-
verted to the subtree shown in Figure 5(a). Binary complex condition→ is converted to
the subtree shown in Figure 5(b). Unary complex conditions are converted in a similar
way. The final tree can be further linearized to (b1 (→ b1 (b2 (Ref b2 x1) (Pred b2 x1 person
n.01)) (b3 (Ref b4 t1) (Pred b4 t1 time n.08) (TPR b4 t1 now) (Ref b3 e1) (Pred b3 e1 kill v.01)
(Time b3 e1 t1) (Patient b3 e1 x1)))).

4. Cross-lingual Semantic Parser

As mentioned earlier, PMB (Abzianidze et al. 2017) contains a small number of gold
standard DRS annotations in German, Italian, and Dutch. Multilingual DRSs in PMB
use English WordNet synsets regardless of the source language. The output of our cross-
lingual semantic parser is compatible with this assumption which is also common in
related broad-coverage semantic formalisms (Damonte and Cohen 2018; Zhang et al.
2018). In the following, we present two learning schemes (illustrated schematically in
Figure 6) for bootstrapping DRT semantic parsers for languages lacking gold standard
training data.

4.1 Many-to-One Method

According to the Many-to-One approach, target sentences (e.g., in German) are trans-
lated to source sentences (e.g., in English) via a machine translation system and then a
relatively accurate source DRS parser (trained on gold-standard data) is adopted to map
the target translations to their semantic representation. Figure 6(a) provides an example
for the three PMB languages.

An advantage of this method is that labeled training data in the target language is
not required. However, the performance of the semantic parser on the target languages
is limited by the performance of the semantic parser in the source language; moreover,
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de (test)

it (test)

nl (test)

en (test) en parser

en (train, gold)

Meaning Representation

(a)

de (test) it (test) nl (test)de parser it parser nl parser

de (train) it (train) nl (train)

en (train, gold)

Meaning Representation Meaning Representation Meaning Representation

(b)

Figure 6: Two approaches for learning cross-lingual DRT parsers. Red arrows denote a
machine translation engine; blue arrows denote the training of semantic parsing model,
and cyan arrows denote the application of trained parser to test data (drawn in dotted
background).

the cross-lingual parser must be interfaced with a machine translation system at run-
time, since it only accepts input in the pivot language (such as English).

4.2 One-to-Many Method

The One-to-Many approach constructs training data for the target languages (see in
Figure 6(b)) via machine translation. The translated sentences are paired with gold
DRSs (from the source language) and collected as training data for the target languages.
An advantage of this method is that the obtained semantic parsers are sensitive to
the linguistic aspects of individual languages (and how these correspond to mean-
ing representations). From a modeling perspective, it is also possible to exploit large
amounts of unlabeled data in the target language to improve the performance of the
semantic parser. Also, notice that the parser is independent of the machine translation
engine employed (sentences need to be translated only once) and the semantic parser
developed for the source language. In theory, different parsing models can be used to
cater for language-specific properties.

The learning schemes just described are fairly general and compatible with either
clause or tree DRS formats, or indeed meaning representation schemes that are not

11
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based on DRT. However, the proposed UDRS representation heavily depends on the
order of the tokens in the natural language sentences, and as a result is less suited to the
Many-to-One method; parallel sentences in different languages might have different
word orders and consequently different UDRSs (recall that the latter are obtained via
aligning non-English tokens to English ones). Many-to-One adopts the rather strong
assumption that meaning representations are invariant across languages. If the Italian
sentence sono stati uccisi tutti. is translated as everyone was killed in English, a parser
trained on English data would output the UDRS in Figure 1(b), while the correct
analysis would be Figure 1(c). The resulting UDRS would have to be post-processed
in order for the indices to accurately correspond to tokens in the source language (in
this case Italian). Many-to-One would thus involve the extra step of modifying English
UDRSs back to the UDRSs of the source language. Since UDRS indices are anchored
to input sentences via word alignments, we would need to employ word alignment
models for every new language seen at test time which renders Many-to-One for UDRS
representations slightly impractical.

4.3 Semantic Parsing Model

Following previous work on semantic parsing (Dong and Lapata 2016; Jia and Liang
2016; Liu, Cohen, and Lapata 2018; van Noord et al. 2018b), we adopt a neural sequence-
to-sequence model which assumes that trees or clauses can be linearized into PTB-style
bracketed sequences and sequences of symbols, respectively. Specifically, our encoder-
decoder model builds on the Transformer architecture (Vaswani et al. 2017), a highly
efficient model which has achieved state-of-the-art performance in machine translation
(Vaswani et al. 2017), question answering (Yu et al. 2018), summarization (Liu, Titov,
and Lapata 2019), and grounded semantic parsing (Wang et al. 2020).

Our DRS parser takes a sequence of tokens, {s0, s1, ..., sn−1} as input and outputs
their linearized DRS {t0, t1, ..., tm−1}, where n is the number of input tokens, and m is
the number of the symbols in the output DRS.

Encoder. Each input token is represented by a vector xk, which is the sum of word em-
beddings esk and position embeddings pk: xk = esk + pk. The input representations,
x0, x1, ..., xn−1, are fed to the Transformer encoder to obtain their hidden representa-
tions, h0, h1, ..., hn−1,:

[h0 : hn−1] = LAYERNORM(ENCODER([x0 : xn−1])), (1)

where each layer of the ENCODER is:

[x̄0 : x̄n−1] = LAYERNORM([x0 : xn−1]),

[h̄0 : h̄n−1] = MULTIHEADSELFATTN([x̄0 : x̄n−1]),

[h0 : hn−1] = FFN([h̄0 : h̄n−1] + [x0 : xn−1]),

(2)

and LAYERNORM is a layer normalization function (Ba, Kiros, and Hinton 2016); MUL-
TIHEADSEFLATTN is the multi-head self-attention mechanism introduced in Vaswani
et al. (2017) which allows the model to jointly attend to information from different
representation subspaces (at different) positions; and FFN is a two-layer feed-forward
network with ReLU function.
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Decoder. The decoder uses the contextual representations of the encoder together with
the embeddings (y<k = et<k

+ pt<k
) of the previously predicted tokens to output the

next token tk with the highest probability:

p(tk|t<k) = SOFTMAX(g(htk)), (3)

where g is a linear function, and

htk = LAYERNORM(DECODER(y<k, [h0 : hn−1])), (4)

and each layer of the DECODER consists of five components:

ȳ<k = LAYERNORM(y<k),

qk−1 = MULTIHEADATTN(ȳk−1, ȳ<k),

q̄k−1 = LAYERNORM(qk−1 + y<k),

h̄k−1 = MULTIHEADATTN(q̄k−1, [x0 : xn−1]),

htk = FFN(h̄k−1 + qk−1 + yk−1),

(5)

and MULTIHEADATTN(yk−1, yk−11 ) returns the contextual representation for yk−1 ac-
cording to its context information yk−11 .

4.4 Training

Our models are trained with standard back-propagation that requires a large-scale
corpus with gold-standard annotations. The PMB does not contain high-volume an-
notations for model training in languages other than English (although gold-standard
data for development and testing are provided). The situation is unfortunately common
when developing multilingual semantic resources that demand linguistic expertise and
familiarity with the target meaning representation (discourse representation theory in
our case). In such cases, model training can be enhanced by recourse to automatically
generated annotations which can be obtained with a trained parser. The quality of
these data varies depending on the accuracy of the underlying parser and whether
any manual correction has taken place on the output. In this section, we introduce
an iterative training method that makes use of auto-standard annotations of varying
quality and is model-independent.

Let Dauto = D0, D1, ..., Dm−1 denote different versions of training data generated
automatically; indices denote the quality of the auto-standard data, D0 has lowest qual-
ity, Dm−1 has highest quality, and Di(0 ≤ i < m) is auto-standard data with quality i.
The model is first collectively trained on all available data Dauto and then at each
iteration on subset Dauto/D1 which excludes the data with the lowest quality Di. So,
the model takes advantage of large-scale data for more reliable parameter estimation
but is progressively optimized on better quality data. Algorithm 3 provides a sketch
of this training procedure. Iterative training is related to self-training, where model
predictions are refined by training on progressively more accurate data. In the case of
self-training, the model is trained on its own predictions, while in iterative training,
the model employs annotations of increasingly better quality. These can be produced
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Algorithm 3 Iterative training
Input: Minit, the model; D, auto-standard training data

Output: Mopt, the optimal model
1: M0 = Minit

2: for i in 1...m do
3: Mi = TRAIN(D,Mi−1)
4: D = D/Di

5: end for
6: Mopt = Mm

by other models, human experts or a mixture. Since we know a priori the quality of
annotations, we can ensure that later model iterations make use of better data.

5. Experiments

In this section we describe the dataset used in our experiments, as well as details
concerning the training and evaluation of our models.

5.1 Data

Our experiments were carried out on the Parallel Meaning Bank 2.2.0, which is anno-
tated with DRSs for English (en), German (de), Italian (it), and Dutch (nl). The dataset
contains gold standard training data for English only, while development and test gold
standard data is available in all four languages. The PMB also provides silver and
bronze standard training data in all languages. Silver data is only partially checked
for correctness, while bronze data is not manually checked in any way. Both types of
data were built using Boxer (Bos 2008), an open-domain semantic parser that produces
DRS representations by capitalizing on the syntactic analysis provided by a robust CCG
parser (Curran, Clark, and Bos 2007).

5.2 Settings

All models share the same hyperparameters. The dimension of the word embeddings
is 300, the Transformer encoder and decoder have 6 layers with a hidden size of 300
and 6 heads; the dimension of position-wise feedforward networks is 4,096. The models
were trained to minimize a cross-entropy loss objective with an l2 regularization term.
We used Adam (Kingma and Ba 2014) as the learning rate optimizer; the initial learning
rate was set to 0.001 with a 0.7 learning rate decay for every 4,000 updates starting after
30,000 updates. The batch size was 2,048 tokens. Our hyperparameter settings follow
previous work (van Noord et al. 2018b; Liu, Cohen, and Lapata 2019b).

Monolingual Setting. Our monolingual experiments were conducted on the English
portion of the PMB. We used the standard training/test splits provided in the dataset.
We obtained UDRSs using the manual alignments from DRS tokens to sentence tokens
included in the PMB release. Our models were trained with the iterative training scheme
introduced in Section 4.4 using the PMB bronze-, silver- and gold-standard data (we use
D0 to refer to bronze, D1 denotes silver, and D2 gold).
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Cross-lingual Setting. All cross-lingual experiments were conducted using Google Trans-
late’s API10, a commercial state-of-the-art system supporting more than a hundred
languages (Wu et al. 2016). Bronze- and silver-training data for German, Italian, and
Dutch are provided with the PBM release. For experiments on other non-English
languages, we only used the One-To-Many method to create training data for UDRS
parsing (Section 4.2). For this, the original alignments (of meaning constructs to input
tokens) in English UDRSs need to be modified to correspond to tokens in the translated
target sentences. We used the GIZA++ toolkit to obtain forward alignments from source
to target and backward alignments from target to source (Koehn, Och, and Marcu
2003). UDRSs for which no available alignment for tokens was found were excluded
from training.11 For iterative training, we consider bronze- and silver-training data (if
these are available) of lower quality (i.e., D0 and D1, respectively) compared to data
constructed by the One-To-Many method (i.e., D2).

5.3 Evaluation

We evaluated the output of our semantic parser using COUNTER (van Noord
et al. 2018a), a recently proposed metric suited for scoped meaning representations.
COUNTER operates over DRSs in clause format and computes precision and recall on
matching clauses. DRSs and UDRSs in tree format can easily revert to boxes which in
turn can be rendered as clauses for evaluation purposes.12

5.4 Models

We compared 11 models on the English portion of the PMB data:

• SPAR is a baseline system that outputs the same DRS for each test instance.13

• SIM-SPAR is a baseline system that outputs the DRS of the most similar sentence
in the training set, based on a simple word embedding metric (van Noord et al.
2018b).

• Boxer is a system that outputs the DRSs of sentences according to their supertags
and CCG derivations (Bos 2015). Each word is assigned a lexical semantic represen-
tation according to its supertag category, and the representation of a larger span is
obtained by combining the representations of two continuous spans (or words). The
semantic representation of the entire sentence is composed based on the underlying
CCG derivation.

• Graph is a graph neural network that generates DRSs according to a directed
acyclic graph grammar (Fancellu et al. 2019). Grammar rules are extracted from
the training data, and the model learns how to apply these to obtain DRSs.

• Transition is a neural transition-based model which incrementally generates DRSs
(Evang 2019). It repeatedly selects transition actions within a stack-buffer frame-
work. The stack contains the sequence of generated partial DRS, while the buffer
stores incoming words. Transition actions either consume a word in the buffer or

10 https://translate.google.com/toolkit
11 Two sentences were discarded for German and 55 for Italian.
12 UDRSs replace language-specific symbols with anchors without however changing the structure of the

meaning representation in any way; UDRSs can be evaluated with COUNTER in the same way as DRSs.
13 In PMB (release 2.2.0) this is the DRS for the sentence Tom voted for himself.’
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DRS Prec Rec F1

SPAR 44.4 37.8 40.8
SIM-SPAR 57.0 58.4 57.7
BOXER 72.1 72.3 72.2
Transition 75.6 74.6 75.1
Graph – – 76.4
Neural-BOXER 85.0 81.4 83.2
MultiEnc 87.6 86.3 87.0

Cls-LSTM 82.5 83.3 83.9
Tree-LSTM 84.3 84.7 84.3
Cls-Transformer 88.1 87.7 87.9
Tree-Transformer 88.6 88.9 88.7

w/o bronze 86.1 86.0 86.0 (−2.6)
w/o bronze & silver 79.9 84.4 82.1 (−6.5)

Table 1: English DRS parsing (PMB 2.2.0 test set); results for SPAR, SIM-SPAR, BOXER,
Transition, Graph, Neural-BOXER, and MultiEnc are taken from respective papers; best
result per metric shown in bold.

merge two partial DRS to a new DRS. The system terminates when all words are
consumed, and only one item remains on top of the stack.

• Neural-Boxer is an LSTM-based neural sequence-to-sequence model that outputs
DRSs in clause format (van Noord et al. 2018b).

• MultiEnc (van Noord, Toral, and Bos 2019) extends Neural-Boxer with multiple
encoders representing grammatical (e.g., parts of speech) and syntactic information
(e.g., dependency parses). It also outputs DRSs in clause format.

• Cls/Tree-Transformer is the Transformer model from Section 4.3; it outputs DRSs
in clause and tree format using the box-to-tree conversion algorithm introduced
in Section 3.2. For the sake of completeness, we also re-implement LSTM models
trained on clauses and trees (Cls/Tree-LSTM).

Our cross-lingual experiments were carried out on German, Italian, and Dutch. We
built four cross-lingual Transformer-based models:

• Cls/Tree-m2o uses the Many-to-One method to translate non-English sentences
into English and parse them using an English Transformer trained on clauses or
trees.

• Cls/Tree-o2m applies the One-to-Many method to construct training data in the
target languages for training clause and tree Transformer models.

6. Results

We first present results on DRS parsing in order to assess the performance of our model
on its own and whether differences in the format of the DRS representations make
any difference. Having settled the question of which format to use, we next report
experiments on UDRS parsing.
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de it nl all
DRS Pre Rec F1 Pre Rec F1 Pre Rec F1 avg F1

Cls 72.1 72.6 72.3 74.2 74.4 74.3 64.3 65.2 64.8 70.5
Cls-m2o 84.5 83.6 84.0 85.1 85.4 85.2 84.4 84.0 84.2 84.5
Cls-o2m 81.1 80.2 80.6 81.0 80.6 80.8 76.0 76.4 76.2 79.2
Tree 72.6 72.9 72.8 75.4 75.9 75.7 65.8 66.22 66.0 71.5
Tree-m2o 84.6 83.9 84.2 86.0 85.6 85.9 84.3 84.4 84.4 84.9
Tree-o2m 82.7 81.1 81.9 81.4 81.0 81.2 78.4 77.5 78.0 80.3

Table 2: DRS parsing results on German, Italian, and Dutch (PMB test set); best result
per metric shown in bold.

UDRS Prec Rec F1

Cls-Transformer 94.2 91.1 92.5
Tree-Transformer 93.9 93.6 93.8

Table 3: English UDRS parsing results (PMB test set); best result per metric is shown in
bold.

6.1 DRS Parsing

Table 1 summarizes our results on DRS parsing. As can be seen, neural models
overwhelmingly outperform comparison baselines. Transformers trained on trees and
clauses perform better (by 4.0 F1 and 4.4 F1, respectively) than LSTMs trained on data
in the same format. A Transformer trained on trees performs slightly better (by 0.8 F1)
than the same model trained on clauses and is overall best among models employing
DRS-based representations.

Our results on the DRS cross-lingual setting are summarized in Table 2. Many-
to-One parsers outperform One-to-Many ones, however, the difference is starker for
Clauses than for Trees (5.3 vs. 4.6 F1 points). With the Many-to-One strategy, Tree-based
representations are overall slightly better on DRS parsing.

6.2 UDRS Parsing

Table 3 summarizes our results on the UDRS monolingual setting. We observe that a
Transformer model trained on tree-based representations is better (by 1.3 F1) compared
to the same model trained on clauses. This suggests that UDRSs parsing indeed benefits
more from tree representations.

Our results on the UDRS cross-lingual setting are shown in Table 4. Aside from
UDRS parsers trained with the One-to-Many strategy (Cls-o2m and Tree-o2m), we also
report the performance of monolingual Transformers (clause and tree formats) trained
on the silver and bronze standard datasets provided in PMB. All models were evaluated
on the gold standard PMB test data. We only report the performance of One-to-Many
UDRS parsers due to the post-processing issue discussed in Section 4.2. Compared to
models trained on silver and bronze data, the one-to-many strategy improves perfor-
mance for both clause and tree formats (by 5.7 F1 and 5.7 F1, on average). Overall, the
cross-lingual experiments show that we can indeed bootstrap fairly accurate semantic
parsers across languages, without any manual annotations on the target language.
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de it nl all
UDRS Pre Rec F1 Pre Rec F1 Pre Rec F1 avg F1

Cls 83.0 82.4 82.7 85.2 85.3 85.2 74.9 75.9 75.4 81.1
Cls-o2m 89.0 88.7 88.8 88.4 87.9 88.2 86.1 84.6 85.3 87.4
Tree 83.1 82.8 83.0 85.1 85.3 85.2 75.6 76.5 76.1 81.4
Tree-o2m 89.5 88.7 89.1 89.2 88.2 88.7 85.7 84.8 85.2 87.7

Table 4: UDRS parsing results on German, Italian, and Dutch (PMB test set); best result
per metric shown in bold.

6.3 Analysis

In this section, we analyze in more detail the output of our parsers in order to determine
which components of the semantic representation are modeled best. We also examine
the effect of the iterative training on parsing accuracy.

Fine-grained Evaluation. COUNTER (van Noord et al. 2018a) provides detailed break-
down scores for DRS operators (e.g., negation), Roles (e.g., Agent), Concepts (i.e., pred-
icates), and Synsets (e.g., “n.01”). Table 5 compares the output of our English semantic
parsers. For DRS representations, Tree models perform better than Clauses on most
components except for adjective and adverb synsets. All models are better at predicting
noun senses compared to verbs, adjectives, and adverbs. The clause format is better
when it comes to predicting the senses of adverbs. Nevertheless, all models perform
poorly on adverbs which are relatively rare in the PMB. In our cross-lingual experi-
ments, we observe that Tree models slightly outperform Clauses across languages. For
the sake of brevity, Table 6 only reports a break-down of the results for Trees. Interest-
ingly, we see that the bootstrapping strategies proposed here are a better alternative
to just training semantic parsers on PMB’s silver and bronze data (see Tree column in
Table 6). Moreover, the success of the bootstrapping strategy seems to be consistent
among languages, with Many-to-One being overwhelmingly better than One-to-Many,
even though Many-to-One fails to predict the adverb synset. Overall, the prediction
of synsets is a harder task and indeed performance improves when the model only
focuses on operators and semantic roles (compare Tree and Tree-o2m columns in DRS
and UDRS). Without incorporating sense distinctions, UDRSs are relatively easier to
predict, the vocabulary of the meaning constructs is smaller, it only includes global
symbols like semantic role names and DRS operators that are shared across languages,
thus making the parsing task simpler.

Iterative Training. Figure 7 shows how prediction accuracy varies with the quality of the
training data. The black dotted curve shows the accuracy of a model trained on the
combination of bronze-, silver- and gold-standard data (D0 + D1 + D2), the red dashed
curve shows the accuracy of a model trained on the silver- and gold-standard data
(D1 + D2), and the blue curve shows the accuracy of a model trained only on gold-
standard data (D2). As can be seen, the use of more data leads to a big performance
boost (compare the model trained on D0 + D1 + D2 against just D2). We also show what
happens after the model converges on D0 + D1 + D2: further iterations on D1 + D2

slightly improve performance, while a big boost is gained from continually training
on gold-standard data (D2). The relatively small gold-standard data is of high quality
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DRS LSTM Transformer
Cls Tree Cls Tree

DRS operator 90.80 91.02 94.05 95.07
Role 81.68 83.23 87.87 88.48
Concept 81.41 82.91 85.97 86.87
Syns-Noun 87.41 87.79 91.57 91.86
Syns-Verb 65.27 66.04 71.58 74.20
Syns-Adjective 71.74 73.12 74.73 76.93
Syns-Adverb 66.48 60.00 60.00 54.55

Table 5: Fine-grained evaluation (F1) on the English PMB test set by Cls/Tree-
Transformer and Cls/Tree-LSTM. Best result per meaning construct shown in bold.

DRS UDRS
Tree Tree-m2o Tree-o2m Tree Tree-o2m

de

DRS operator 84.89 91.75 90.94 86.26 91.87
Role 72.47 84.37 82.62 73.93 83.83
Concept 69.08 81.69 78.21 — —
Syns-Npun 79.67 88.71 86.19 — —
Syns-Verb 41.38 63.69 58.82 — —
Syns-Adjective 50.32 69.54 59.64 — —
Syns-Adverb 14.29 0.00 25.00 — —

it

DRS operator 87.28 91.20 89.54 87.82 91.20
Role 76.18 88.60 82.02 79.41 84.82
Concept 71.35 81.63 77.60 — —
Syns-Noun 81.71 87.69 86.70 — —
Syns-Verb 44.48 66.13 53.91 — —
Syns-Adjective 52.35 70.16 62.11 — —
Syns-Adverb 0.00 0.00 0.00 — —

nl

DRS operator 79.90 92.98 89.05 82.69 93.58
Role 64.08 83.54 77.72 65.57 77.75
Concept 63.34 82.43 74.63 — —
Syns-Noun 74.66 88.59 82.68 — —
Syns-Verb 32.33 67.26 54.81 — —
Syns-Adjective 41.38 64.86 50.00 — —
Syns-Adverb 0.00 0.00 50.00 — —

Table 6: Fine-grained evaluation (F1%) on German, Italian, and Dutch (test set); best
result per synset shown in bold.

but has low coverage; parameter optimization on the combination of bronze-, silver-
and gold-standard data enhances model coverage, while fine-grained optimization on
gold-standard data increases its accuracy.
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Figure 7: The effect of iterative training on model performance (Tree-Transformer, En-
glish development set).

6.4 Scalability Experiments

We further assessed whether the cross-lingual approach advocated in this paper scales
to multiple languages. We thus obtained UDRS parsers for all languages supported by
Google Translate in addition to German, Italian, and Dutch (99 in total). Specifically,
we applied the One-to-Many bootstrapping method on the English gold-standard PMB
annotations to obtain semantic parsers for 96 additional languages.

Unfortunately, there are no gold-standard annotations to evaluate the performance
of these parsers and the effort of creating these for 99 languages would be prohibitive.
Rather than focusing on a few languages for which annotations could be procured,
we adopt a more approximate but larger-scale evaluation methodology. Damonte and
Cohen (2018) estimate the accuracy of cross-lingual AMR parsers following a full-cycle
evaluation scheme. The idea is to invert the learning process and bootstrap an English
parser from the induced cross-lingual parser via back-translation. The resulting English
parser is then evaluated against the (English) gold-standard under the assumption that
the English parser can be used as a proxy to the score of the cross-lingual parser. In our
case, we applied the One-to-Many method to project non-English annotations back to
English, and evaluated the parsers on the PMB gold-standard English test set.

Table 7 presents our results which are clustered according to language family (we
only report the performance of Tree UDRS models for the sake of brevity). All models
for all languages used the same settings (see Section 5.2). As can be seen, the majority
of languages we experimented with are Indo-European. In this family, the highest
F1 is 81.92 for Danish and Yiddish. In the Austronesian family, our parser performs
best for Indonesian (F1 is 78.20). In the Afro-Asiatic family, Vietnamese achieves the
highest F1 of 79.37. In the Niger-Congo family, the highest F1 is 77.21 for Swahili. In the
Turkic family, our parser performs best for Turkish (F1 is 74.39). In the Dravidian and
Uralic families, Kannada and Estonian obtain the highest F1, respectively. The worst
parsing performance is obtained for Khmer (F1 of 61.53), while for the majority of
languages our parser is in the 71–82% ballpark. Perhaps unsurprisingly, better parsing
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Language F1 Language F1 Language F1

Indo-European Romanian 79.65 Chichewa 73.74
Afrikaans 80.29 Russian 77.87 Igbo 73.39
Albanian 78.41 Scots Gaelic 78.08 Shona 74.24
Armenian 76.93 Serbian 76.53 Sesotho 76.10
Belarusian 78.24 Sindhi 76.46 Swahili 77.21
Bengali 76.59 Sinhala 75.99 Xhosa 72.44
Bosnian 76.66 Slovak 76.44 Yoruba 74.13
Bulgarian 79.34 Slovenian 75.42 Zulu 72.34
Catalan 79.59 Spanish 80.79 Turkic
Corsican 77.66 Swedish 79.18 Azerbaijani 72.66
Croatian 76.94 Tajik 74.70 Kazakh 72.53
Czech 77.20 Ukrainian 78.18 Kyrgyz 73.40
Danish 81.92 Urdu 77.27 Turkish 74.39
French 79.96 Welsh 81.38 Uzbek 72.84
Frisian 80.26 Yiddish 81.92 Dravidian
Galician 78.88 Austronesian Kannada 76.33
Greek 78.35 Cebuano 75.06 Malayalam 75.86
Gujarati 76.50 Filipino 76.58 Tamil 74.14
Hindi 79.31 Hawaiian 70.45 Telugu 75.32
Icelandic 80.03 Indonesian 78.20 Uralic
Irish 79.23 Javanese 75.07 Estonian 78.04
Kurdish 73.37 Malagasy 73.52 Finnish 77.51
Latin 71.01 Malay 77.43 Hungarian 73.93
Latvian 79.34 Maori 73.81 Others
Lithuanian 77.89 Samoan 74.29 Basque 74.18
Luxembourgish 77.21 Afro-Asiatic Chinese 75.64
Macedonian 78.57 Amharic 72.04 Esperanto 79.70
Marathi 76.54 Arabic 74.84 Georgian 73.07
nepali 76.99 Hausa 74.46 Haitian Creole 80.74
Norwegian 80.55 Hebrew 78.83 Hmong 75.52
Pashto 76.05 Maltese 78.89 Japanese 76.03
Persian 76.73 Somali 75.06 Khmer 61.53
Polish 77.48 Sundanese 75.51 Korean 74.14
Portuguese 78.97 Vietnamese 79.37 Mongolian 75.47
Punjabi 78.18 Niger-Congo Average 76.47

Table 7: UDRS parsing results via Tree-o2m for 96 languages individually and on aver-
age; languages are grouped per language family and sorted alphabetically; best results
in each family are shown in bold.

performance correlates with a higher quality of machine translation and statistical word
alignments.14

We further investigated the quality of the constructed datasets by extrapolating
from experiments on German, Italian, and Dutch for which a gold-standard test set is
available. Specifically, using the one-to-many method, we constructed silver-standard
test sets and compared these with their gold-standard counterparts provided in the
PMB. We first assessed translation quality by measuring the BLEU score (Papineni et al.
2002). We also used COUNTER to evaluate the degree to which silver-standard UDRSs
deviate from gold-standard ones. As shown in Table 8, the average BLEU (across three

14 We will make the UDRS datasets for the 96 languages publicly available as a means of benchmarking
semantic parsing performance and also in the hope that some of these might be manually corrected.
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language BLEU F1

de 65.03 94.21
it 61.22 88.41
nl 69.12 94.06

avg 65.12 (±3.9) 92.23 (±1.98)

Table 8: Comparison between gold-standard UDRSsand constructed UDRSs by our
methods in German, Italian, and Dutch using BLUE and COUNTER; standard deviations
are shown in parentheses.

language Prec Rec F1

ja 62.0 65.6 63.7
zh 57.5 61.7 59.5

Table 9: UDRS parsing results on gold-standard Japanese (ja) and Chinese (zh) test sets.

languages) is 65.12 while the average F1 given by COUNTER is 92.23. These results
indicate that the translation quality is rather good, at least for these three languages,
and the PMB sentences. COUNTER scores further show that annotations are transferred
relatively accurately, and that silver-standard data is not terribly noisy, where approxi-
mately 8% of the annotations deviate from the gold standard.

In Table 4, we show the cross-lingual UDRS parsing results on the gold-standard
test set in German, Italian and Dutch, which are close to English. In order to in-
vestigate the cross-lingual UDRS parsing in languages that are far from English, we
performed UDRS parsing experiments in Japanese and Chinese, two languages that are
typologically distinct from English, in the way concepts are expressed and combined
by grammar to generate meaning. For each language, we manually constructed gold
standard UDRS annotations for 50 sentences. Table 9 shows the accuracy of the Chinese
and Japanese parsers we obtained following the one-to-many training approach. These
two languages have relatively lower scores compared to German, Italian, and Dutch in
Table 4. Our results highlight that translation-based cross-lingual methods will be less
accurate for target languages with large typological differences from the source.

6.5 Translation Divergence

Our cross-lingual methods depend on machine translation and alignments, which can
be affected by translation divergences. In this section, we discuss how translation di-
vergences might influence our methods. We focus on the seven types of divergence
highlighted in Dorr (1994) (i.e., promotional, demotional, structural, conflational, cat-
egorical, lexical, and thematic divergences) and discuss whether the proposed UDRS
representation can handle them.

Promotional Divergence. Promotional divergence describes the phenomenon where the
logical modifier of a main verb can be changed. For example, consider the English
sentence John usually goes home and its Spanish translation Juan suele ir a casa (John
tends to go home), where the modifier (usually) is realized as an adverbial phrase in
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b1 : x1, b1 : s1,
b1 : e1, b1 : x2 b1

b1 : Named(x1, $0[John])
b1 : $1[usually].r(s1)
b1 : $2[go].v(e1)
b1 : Agent(e1, x1)
b1 : Manner(e1, s1)
b1 : Destination(e1, x2)
b1 : $3[home].n(x2)

(a)

John usually goes home

Juan suele ir a casa

(b)

b1 : x1, b1 : s1,
b1 : e1, b1 : x2 b1

b1 : Named(x1, $0[Juan])
b1 : $1[suele].r(s1)
b1 : $2[ir].v(e1)
b1 : Agent(e1, x1)
b1 : Manner(e1, s1)
b1 : Destination(e1, x2)
b1 : $4[casa].n(x2)

(c)

Figure 8: Example of promotional divergence. (a) UDRS of English sentence John usu-
ally goes home ; (b) word alignments between the two sentences; (c) Incorrect UDRS of
the Spanish translation Juan suele ir a casa, constructed via alignments.

b1 : e1, b1 : x2 b1

b1 : $1[like].v(e1)
b1 : Agent(e1, $0[I])
b1 : Stimulus(e1, x2)
b1 : $2[eating].n(x2)

(a)

I like eating

Ich esse gern

(b)

b1 : e1, b1 : x2 b1

b1 : $2[gern].v(e1)
b1 : Agent(e1, $0[Ich])
b1 : Stimulus(e1, x2)
b1 : $1[esse].n(x2)

(c)

Figure 9: Example of demotional divergence. (a) UDRS of English sentence I like eating ;
(b) word alignments between two sentences; (c) incorrect UDRS of German translation
Ich esse gern, constructed via alignments.

English but as a verb (sueler) in Spanish. As shown in Figure 8, to obtain the Spanish
UDRS, the English words are replaced with aligned words. However, the adverbial
usually is replaced with the verb suele, which together with the thematic relation,
Manner qualifies how the action ir is carried out. The divergence will raise a Category
Inconsistency in the UDRS, which means that the category (or part of speech) of the
translation is not consistent with that of the source language.

Demotional Divergence. In demotional divergence, a logical head into an internal ar-
gument position can be changed. For example, consider the English sentence I like
eating and its German translation Ich esse gern (I eat likingly). Here, the head (like)
is realized as a verb in English but as an adverbial satellite in German. Figure 9 shows
the alignments between the two sentences and their UDRSs. Similar to promotional
divergence, this also leads to Category Inconsistency in the German UDRS, since gern
should be an adverb, not a verb.

Structural Divergence. Structural Divergences are different in that syntactic structure is
changed and, as a result, syntactic relations may also become different. For example,
for the English sentence John entered the house, the Spanish translation is Juan entró
en la casa (John entered in the house), where the noun phrase the house in English
becomes a prepositional phrase (en la casa) in Spanish. This divergence does not affect
the correctness of the Spanish UDRS (see Figure 10). In general, UDRSs display coarse-
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b1 : x1, b1 : e1,
b1 : x2 b1

b1 : Named(x1, $0[John])
b1 : $1[entered].v(e1)
b1 : Agent(e1, x1)
b1 : Destination(e1, x2)
b1 : $3[house].n(x2)

(a)

John entered the house

Juan entró en la casa

(b)

b1 : x1, b1 : e1,
b1 : x2 b1

b1 : Named(x1, $0[Juan])
b1 : $1[entró].v(e1)
b1 : Agent(e1, x1)
b1 : Destination(e1, x2)
b1 : $4[casa].n(x2)

(c)

Figure 10: Examples of structural divergence. (a) UDRS of English sentence John entered
the house ; (b) word alignments between two sentences. (c) correct UDRS of Spanish
translation Juan entró en la casa, constructed via alignments.

b1 : e1, b1 : x2 b1

b1 : $1[stabbed].v(e1)
b1 : Agent(e1, $0[I])
b1 : Patient(e1, x2)
b1 : $2[John].n(x2)

(a)

I stabbed John

Yo le di puñaladas a Juan

(b)

b1 : e1, b1 : x2 b1

b1 : $2-$3[di puñaladas].v(e1)
b1 : Agent(e1, $0[Yo])
b1 : Patient(e1, x2)
b1 : $5[Juan].n(x2)

(c)

Figure 11: Example of conflational divergence. (a) UDRS of English sentence I stabbed
John ; (b) word alignments between two sentences; (c) correct UDRS of Spanish transla-
tion Yo le di puñaladas a Juan, constructed via alignments.

grained thematic relations (in this case Destination) abstracting away from how these
are realized (e.g., as a noun or prepositional phrase).

Conflational and Lexical Divergence. We discuss both types of divergence together. Words
or phrases in the source language can be paraphrased using various descriptions in the
target language. In conflational divergence, for example, the English sentence I stabbed
John” is translated into Spanish as “Yo le di puñaladas a Juan (I gave knife-wounds to
John) using the paraphrase di puñaladas (gave knife-wounds to) to describe the English
word stabbed. Analogously, the word broke in the English sentence He broke into the
room is aligned to forzó (force) in Spanish (Juan forzó la entrada al cuarto). The two
words do not have exactly the same meaning, and yet they convey the breaking event
in their respective language. We expect these divergences to be resolved with many-to-
many word alignments, and yield correct UDRSs as long as the translations are accurate
(see Figures 11 and 12).

Categorical Divergence. The lexical categories (or parts of speech) might change due to the
translation from the source to the target language. For example, the English sentence I
am hungry is translated to German as Ich habe Hunger (I have hunger), where the
adjective hungry in English is translated with the noun Hunger in German. As shown
in Figure 13, categorical divergences will often lead to incorrect UDRSs in the target
language.
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b1 : x1, b1 : e1,
b1 : x2 b1

b1 : Named(x1, $0[John])
b1 : $1[broke].v(e1)
b1 : Agent(e1, x1)
b1 : Destination(e1, x2)
b1 : $4[room].n(x2)

(a)

John broke into the room

Juan forzó la entrada al cuarto

(b)

b1 : x1, b1 : e1,
b1 : x2 b1

b1 : Named(x1, $0[Juan])
b1 : $1[forzó].v(e1)
b1 : Agent(e1, x1)
b1 : Destination(e1, x2)
b1 : $3-$4-$5[entrada al cuarto].n(x2)

(c)

Figure 12: Example of lexical divergence. (a) UDRS of English sentence John broke into
the room ; (b) word alignments between two sentences. (c) correct UDRS of Spanish
translation Juan forzó la entrada al cuarto, constructed via alignments.

b1 : s1 b1

b1 : $2[hungry].a(s1)
b1 : Experiencer(s1, $0[I])

(a)

I am hungry

Ich habe Hunger

(b)

b1 : s1 b1

b1 : $2[Hunger].a(s1)
b1 : Experiencer(s1, $0[Ich])

(c)

Figure 13: Example of catergorical divergence. (a) UDRS of English sentence I am
hungry ; (b) word alignments between two sentences; (c) incorrect UDRS of German
translation Ich habe Hunger, constructed via alignments.

b1 : e1, b1 : x2 b1

b1 : $1[like].v(e1)
b1 : Agent(e1, $0[I])
b1 : Stimulus(e1, x2)
b1 : Named(x2, $2[Mary])

(a)

I like Mary

María me gusta a mí

(b)

b1 : e1, b1 : x2 b1

b1 : $2[gusta].v(e1)
b1 : Agent(e1, $1-$4[me mí])
b1 : Stimulus(e1, x2)
b1 : Named(x2, $0[María])

(c)

Figure 14: Example of thematic divergence. (a) UDRS of English sentence I like Mary ;
(b) word alignments between two sentences; (c) incorrect UDRS of Spanish translation
María me gusta a mí, constructed via alignments.

Thematic Divergence. Thematic relations are governed by the main verbs of sentences,
and it is possible for thematic roles to change in translation. For example, the English
sentence I like Mary is translated in Spanish as María me gusta a mí (Mary pleases
me), where the English subject (I ) is changed to an object (me) in Spanish. As shown in
Figure 14, although word alignments can capture the semantic correspondence between
words in the two sentences, the Spanish UDRS ends up with the wrong thematic
relations showing Thematic Inconsistency.

In sum, category and thematic inconsistencies will represent the majority of errors
in the construction of UDRSs in another language from English (via translation and
alignments). Category inconsistencies can be addressed with the help of language-
specific knowledge bases by learning a function f(s, c) = (s′, c′), where s and c are a
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de it nl zh

correct 44 46 45 32
translation error 1 0 0 4
translation divergence error 1 0 0 2
alignment error 4 4 5 12

Table 10: Number of correct and incorrect UDRSs on a sample of 50 sentences for
German, Italian, Dutch, and Chinese.

translated word and an original category, respectively, and s′ and c′ are the corrected
word and category. Addressing thematic inconsistencies is difficult, as it requires to
compare verbs between languages in order to decide whether thematic relations must
be changed.

In order to estimate how many UDRSs are incorrect and quantify what types of
errors they display, we randomly sampled 50 German, Italian, and Dutch UDRSs. As
shown in Table 10, we found that alignment errors are the main cause of incorrect
UDRSs. Translation divergences do not occur very frequently, even though we used
machine translation systems. We also sampled and analyzed 50 UDRSs in Chinese that
is a language typologically very different from English. Again, the number of translation
divergences is small, which may be due to the fact that sentences in PMB are short and
thus relatively simple to translate.

7. Related Work

Recent years have seen growing interest in the development of DRT parsing models.
Early seminal work (Bos 2008) created Boxer, an open-domain DRS semantic parser,
which has been instrumental in enabling the development of the Groningen Meaning
Bank (Bos et al. 2017) and the Parallel Meaning Bank (Abzianidze et al. 2017).

Le and Zuidema (2012) were the first to train a data-driven DRT parser using a
graph-based representation leaving anaphora and presupposition aside. The availabil-
ity of annotated corpora has further allowed the exploration of neural models. Liu,
Cohen, and Lapata (2018) conceptualize DRT parsing as a tree structure prediction
problem which they model with a series of encoder-decoder architectures (see also
the extensions proposed in Liu, Cohen, and Lapata 2019a). van Noord et al. (2018b)
adapt sequence-to-sequence models with LSTM units to parse DRSs in clause format,
also following a graph-based representation. Fancellu et al. (2019) represent DRSs as
direct acyclic graphs and design a DRT parser with an encoder-decoder architecture that
takes as input a sentence and outputs a graph using a graph-to-string rewriting system.
In addition, their parser exploits various linguistically motivated features based on
part-of-speech embeddings, lemmatization, dependency labels, and semantic tags. Our
cross-lingual strategies can be applied to their work as well. So our own work unifies
the proposals of Liu, Cohen, and Lapata (2018) and van Noord et al. (2018b) under
a general modeling framework based on the Transformer architecture, allowing for
comparisons between the two, as well as for the development of cross-lingual parsers.
In addition, we introduce UDRT, a variant of the DRT formalism that we argue facilitates
both monolingual and cross-lingual learning.

The idea of leveraging existing English annotations to overcome the resource short-
age in other languages by exploiting translational equivalences is by no means new. A
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variety of methods have been proposed in the literature under the general framework
of annotation projection (Yarowsky and Ngai 2001; Hwa et al. 2005; Padó and Lapata
2005, 2009; Akbik et al. 2015; Evang and Bos 2016; Damonte and Cohen 2018; Zhang
et al. 2018; Conneau et al. 2018) which focuses on projecting existing annotations on
source-language text to the target language. While other work focuses on model transfer
where model parameters are shared across languages (Cohen, Das, and Smith 2011;
McDonald, Petrov, and Hall 2011; Søgaard 2011; Wang and Manning 2014). Our cross-
lingual parsers rely on translation systems following two ways commonly adopted in
the literature (Conneau et al. 2018; Yang et al. 2019; Huang et al. 2019): translating
the training data into each target language (one-to-many) to provide data to train a
semantic parser per language, and using a translation system at test time to translate
the input sentences to the training language (many-to-one). Our experiments show that
the combination of one-to-many and UDRS representations allows to speed-up meaning
bank creation and the annotation process.

8. Conclusion

In this paper, we introduced Universal Discourse Representation Structures (UDRSs) as
a variant of canonical DRSs; UDRSs link elements of the DRS structure to tokens in the
input sentence and are ideally suited to cross-lingual learning; they omit details pertain-
ing to the lexical makeup of sentences and as a result disentangle the problems of trans-
lating tokens and semantic parsing. We further proposed a general framework for cross-
lingual learning based on neural networks and state-of-the-art machine translation and
demonstrated it can incorporate various DRT formats (e.g., trees vs. clauses) and is
scalable. In the future, we would like to improve the annotation quality of automatically
created meaning banks by utilizing human-in-the-loop methods (Zanzotto 2019) that
leverage machine learning algorithms (e.g., for identifying problematic annotations or
automatically correcting obvious mistakes) or crowdsourcing platforms.
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